por alzenir agapito » Sex Abr 29, 2011 21:56
Ola, gostaria de saber como se calcula a derivada de

pela derivação por partes, pois, não consigo obter o resultado, por este método.
Agapito
-
alzenir agapito
- Usuário Dedicado

-
- Mensagens: 28
- Registrado em: Seg Abr 25, 2011 22:27
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: matematica
- Andamento: formado
por LuizAquino » Sex Abr 29, 2011 22:07
"Derivada por partes"? Usualmente, o que temos é "Integral por partes". Além disso, esse diferencial "dx" na expressão de sua função não está fazendo sentido.
De qualquer modo, para derivar uma função do tipo

, use a regra do quociente:
![\left[\frac{f(x)}{g(x)}\right]^{'} = \frac{f'(x)g(x)-f(x)g'(x)}{[g(x)]^2} \left[\frac{f(x)}{g(x)}\right]^{'} = \frac{f'(x)g(x)-f(x)g'(x)}{[g(x)]^2}](/latexrender/pictures/c649e80828b8f7e15fc43ea811a8acc1.png)
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por alzenir agapito » Sex Abr 29, 2011 22:24
Sim Luiz, pela regra do quociente, eu consigo achar a resposta correta,porèm, quando aplico derivação por partes não, consigo, gostaria de visualisar qual é o meu erro.
-
alzenir agapito
- Usuário Dedicado

-
- Mensagens: 28
- Registrado em: Seg Abr 25, 2011 22:27
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: matematica
- Andamento: formado
por alzenir agapito » Sex Abr 29, 2011 22:27
Perdão Luiz, o caso é de integração mesmo!!!!!!!!!!!
-
alzenir agapito
- Usuário Dedicado

-
- Mensagens: 28
- Registrado em: Seg Abr 25, 2011 22:27
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: matematica
- Andamento: formado
por alzenir agapito » Sex Abr 29, 2011 22:34
Gostaria de ver passo a passo com a fórmula

-
alzenir agapito
- Usuário Dedicado

-
- Mensagens: 28
- Registrado em: Seg Abr 25, 2011 22:27
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: matematica
- Andamento: formado
por LuizAquino » Sex Abr 29, 2011 22:38
Sendo assim, ao que parece você quer resolver por partes a seguinte integral:

Fazendo

, temos que

.
Fazendo

, temos que

.
Usando a regra de integração por partes, temos que:




, com
c uma constante real qualquer.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por FilipeCaceres » Sex Abr 29, 2011 22:51
Existe um programa muito bom onde se mostra as etapas da solução, veja como ficaria da sua questão.
http://www.wolframalpha.com/input/?i=integral%28log[e%2Cx]%2Fx%29
É só clicar em Show Step.
PS.:Você vai precisar copiar e colar o endereço.
Abraço.
-
FilipeCaceres
- Colaborador Voluntário

-
- Mensagens: 351
- Registrado em: Dom Out 31, 2010 21:43
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Tec. Mecatrônica
- Andamento: formado
por alzenir agapito » Sáb Abr 30, 2011 06:12
Valeu Luiz
O que eu não estava visualizando é que a segunda expressão era negativa, no segundo membro e igual a expressão positiva no primeiro membro.o que daria o dobro da expressão no primeiro membro e consequentemente dividiria por 2 o segundo.
vleu mesmo!!!!!!!!!!!!!
-
alzenir agapito
- Usuário Dedicado

-
- Mensagens: 28
- Registrado em: Seg Abr 25, 2011 22:27
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: matematica
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Derivação - derivação logarítmica
por teer4 » Ter Mai 21, 2013 12:11
- 0 Respostas
- 2003 Exibições
- Última mensagem por teer4

Ter Mai 21, 2013 12:11
Cálculo: Limites, Derivadas e Integrais
-
- parte-todo
por leticiapires52 » Sex Ago 15, 2014 13:23
- 0 Respostas
- 1595 Exibições
- Última mensagem por leticiapires52

Sex Ago 15, 2014 13:23
Números Complexos
-
- [Integral] Integração por parte...
por Jessica Seno » Dom Out 14, 2012 14:37
- 3 Respostas
- 1863 Exibições
- Última mensagem por DanielFerreira

Dom Out 28, 2012 17:17
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Integração por parte
por LAZAROTTI » Ter Out 23, 2012 10:33
- 1 Respostas
- 1169 Exibições
- Última mensagem por MarceloFantini

Ter Out 23, 2012 12:03
Cálculo: Limites, Derivadas e Integrais
-
- parte da equação diferencial em f(x) e o grafico
por Bio Molina » Sáb Jun 13, 2009 18:37
- 0 Respostas
- 975 Exibições
- Última mensagem por Bio Molina

Sáb Jun 13, 2009 18:37
Números Complexos
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.