por genicleide » Qua Abr 20, 2011 14:28
Não estou conseguindo derivar:
![f(x)=\frac{2x}{\sqrt[2]{3x-1}} f(x)=\frac{2x}{\sqrt[2]{3x-1}}](/latexrender/pictures/8827474e2ce86af38df41d6a94a36ec0.png)
Alguém poderia me ajudar, estou tentando pela regra do quociente mas não tá dando certo.
-
genicleide
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qua Abr 20, 2011 11:33
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Quimica
- Andamento: cursando
por LuizAquino » Qua Abr 20, 2011 15:34
Após aplicar a regra do quociente, será necessário aplicar a regra da cadeia para derivar o termo

:

Use essa informação para terminar o exercício. Se não conseguir terminar, envie a sua resolução para identificarmos os problemas.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por genicleide » Qua Abr 20, 2011 17:17
Bom eu resolvi até certo ponto mas n sei se estou correta. Esta é a minha resolução:
![f(x)= \frac{2x}{\sqrt[]{3x-1}}
\rightarrow
f(x)= \frac{2x}{{(3x-1)}^{1/2}}\rightarrow
f'(x)=\frac{2(3x-1)^{1/2}-3x(3x-1)^{-1/2}}{({3x-1}^{1/2})^{2}}\rightarrow f(x)= \frac{2x}{\sqrt[]{3x-1}}
\rightarrow
f(x)= \frac{2x}{{(3x-1)}^{1/2}}\rightarrow
f'(x)=\frac{2(3x-1)^{1/2}-3x(3x-1)^{-1/2}}{({3x-1}^{1/2})^{2}}\rightarrow](/latexrender/pictures/e6d49b3594b07f2fdf5735b99ba46033.png)
Apartir daki não consigo desenvolver.
Se puder me ajudar
-
genicleide
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qua Abr 20, 2011 11:33
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Quimica
- Andamento: cursando
por LuizAquino » Qua Abr 20, 2011 17:42
Temos a função
![f(x)= \frac{2x}{\sqrt[]{3x-1}} f(x)= \frac{2x}{\sqrt[]{3x-1}}](/latexrender/pictures/7db572b1ce80bcd4e3cc063a255d7572.png)
. A sua derivada será:

Como o domínio da função é

, temos que

. Desse modo, teremos que:

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por genicleide » Qua Abr 20, 2011 19:44
Muito obrigada!
-
genicleide
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qua Abr 20, 2011 11:33
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Quimica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [DERIVADAS] Regra da Cadeia
por pauloguerche » Qua Set 07, 2011 17:19
- 4 Respostas
- 3814 Exibições
- Última mensagem por LuizAquino

Qui Set 08, 2011 10:50
Cálculo: Limites, Derivadas e Integrais
-
- [derivadas] regra da cadeia
por emsbp » Sex Mar 16, 2012 08:45
- 2 Respostas
- 2148 Exibições
- Última mensagem por emsbp

Sex Mar 16, 2012 18:38
Cálculo: Limites, Derivadas e Integrais
-
- [DERIVADAS] Regra Da Cadeia
por guigoraphael » Qua Ago 07, 2013 21:17
- 0 Respostas
- 1273 Exibições
- Última mensagem por guigoraphael

Qua Ago 07, 2013 21:17
Cálculo: Limites, Derivadas e Integrais
-
- Regra da cadeia para derivadas parciais
por Maisa_Rany » Qua Nov 07, 2018 16:47
- 2 Respostas
- 9286 Exibições
- Última mensagem por Maisa_Rany

Qui Nov 08, 2018 16:33
Cálculo: Limites, Derivadas e Integrais
-
- [Cálculo 2] Regra da cadeia em derivadas parciais
por NavegantePI » Sáb Jun 25, 2016 18:05
- 0 Respostas
- 1918 Exibições
- Última mensagem por NavegantePI

Sáb Jun 25, 2016 18:05
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.