• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Regra da cadeia, potencia, produto, seno, cosseno

Regra da cadeia, potencia, produto, seno, cosseno

Mensagempor 0 kelvin » Sex Abr 15, 2011 06:50

Derivar sen(cos²(x))cos(sen²(x))

Fiz o produto e saiu (sen(cos²(x)))' . cos(sen²(x)) + sen(cos²(x)) . (cos(sen²(x)))'

Daí derivada de sen é cos e cos é -sen.

cos(cos²(x)) . cos(sen²(x)) + sen(cos²(x)) . (-sen(sen²(x)))

Substituindo variável:

cos(x) = u
sen(x) = v

cos(u²) . cos(v²) + sen(u²) . (-sen(v²))

Fiz regra da potência e saiu 2cos(u) . 2cos(v) + 2sen(u) . (-2sen(v))

Mas daí parece que não vai mais pra lugar nenhum.
0 kelvin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 78
Registrado em: Dom Out 31, 2010 16:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencias atmosfericas
Andamento: cursando

Re: Regra da cadeia, potencia, produto, seno, cosseno

Mensagempor LuizAquino » Sex Abr 15, 2011 09:31

[\textrm{sen}\,(\cos^2 x)\cos (\textrm{sen}^2\,x)]^\prime = [\textrm{sen}\,(\cos^2 x)]^\prime\cos (\textrm{sen}^2\,x) + \textrm{sen}\,(\cos^2 x)[\cos (\textrm{sen}^2\,x)]^\prime

= \cos(\cos^2 x)[\cos^2 x]^\prime\cos (\textrm{sen}^2\,x) - \textrm{sen}\,(\cos^2 x)\textrm{sen}\,(\textrm{sen}^2\,x)[\textrm{sen}^2\,x]^\prime

= 2\cos(\cos^2 x)\cos x[\cos x]^\prime\cos (\textrm{sen}^2\,x) - 2\textrm{sen}\,(\cos^2 x)\textrm{sen}\,(\textrm{sen}^2\,x)\textrm{sen}\,x[\textrm{sen}\,x]^\prime

= -2\cos(\cos^2 x)\cos x\,\textrm{sen}\,x\cos (\textrm{sen}^2\,x) - 2\textrm{sen}\,(\cos^2 x)\textrm{sen}\,(\textrm{sen}^2\,x)\textrm{sen}\,x\cos x

= -2\textrm{sen}\,x \cos x[\cos(\cos^2 x)\cos (\textrm{sen}^2\,x) + \textrm{sen}\,(\cos^2 x)\textrm{sen}\,(\textrm{sen}^2\,x)]

= -\textrm{sen}\,2x\cos(\cos 2x)

Observação
No último passo usamos três identidades trigonométricas:
(i) 2\textrm{sen}\,a\cos a = \textrm{sen}\,2a
(ii) \cos a\cos b + \textrm{sen}\,a\,\textrm{sen}\,b = \cos(a-b)
(iii) \cos^2 a - \textrm{sen}^2\, a = \cos 2a
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.