por sandra silva » Seg Set 29, 2008 20:01
Me ajudaem ae umaurgencia
provar que:
[sen(x)]^(5) = cos(x)
-
sandra silva
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Ter Ago 26, 2008 22:00
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: lic em matematica
- Andamento: cursando
por Molina » Ter Set 30, 2008 00:53
Boa noite, Sandra.
Nunca fiz essa prova elevada a 5, apenas provei que

. Vou postar aqui, espero que te ajude:
![\frac{d}{dx}[senx]\Rightarrow \lim_{h\rightarrow 0}\frac{sen(x+h)-sen(x)}{h}= \lim_{h\rightarrow 0} \frac{sen(x)cos(h)+sen(h)cos(x)-sen(x)}{h}= \lim_{h\rightarrow 0} \frac{sen(x)(cos(h)-1)+sen(h)cos(x)}{h}=\lim_{h\rightarrow 0} \frac{sen(x)(cos(h)-1)}{h} + \lim_{h\rightarrow 0} \frac{sen(h)cos(x)}{h}= sen(x) \lim_{h\rightarrow 0} \frac{(cos(h)-1)}{h} + cos(x) \lim_{h\rightarrow 0} \frac{sen(h)}{h} \frac{d}{dx}[senx]\Rightarrow \lim_{h\rightarrow 0}\frac{sen(x+h)-sen(x)}{h}= \lim_{h\rightarrow 0} \frac{sen(x)cos(h)+sen(h)cos(x)-sen(x)}{h}= \lim_{h\rightarrow 0} \frac{sen(x)(cos(h)-1)+sen(h)cos(x)}{h}=\lim_{h\rightarrow 0} \frac{sen(x)(cos(h)-1)}{h} + \lim_{h\rightarrow 0} \frac{sen(h)cos(x)}{h}= sen(x) \lim_{h\rightarrow 0} \frac{(cos(h)-1)}{h} + cos(x) \lim_{h\rightarrow 0} \frac{sen(h)}{h}](/latexrender/pictures/2e692a5db833df60e5d3ca9ae9e71789.png)
agora vamos por parte:

levamos em consideração o limite fundamental

voltando a nossa conta:


Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por sandra silva » Ter Set 30, 2008 06:40
Ola, Molina muito obrigada,ja estava de cabelos branço.
voccê de ajuda matematica e muito importante para a minha caminhada que e longa.
bj sandra
-
sandra silva
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Ter Ago 26, 2008 22:00
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: lic em matematica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Derivada] Ajuda com calculo de derivada de função quociente
por alienpuke » Dom Out 25, 2015 15:31
- 1 Respostas
- 10374 Exibições
- Última mensagem por Cleyson007

Dom Out 25, 2015 16:47
Cálculo: Limites, Derivadas e Integrais
-
- [derivada] derivada pela definição da secante
por TheKyabu » Sáb Out 27, 2012 23:24
- 2 Respostas
- 10632 Exibições
- Última mensagem por TheKyabu

Dom Out 28, 2012 11:44
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada] Com duas variáveis e derivada mista
por leticiaeverson » Dom Abr 22, 2018 00:39
- 3 Respostas
- 12843 Exibições
- Última mensagem por Gebe

Dom Abr 22, 2018 17:11
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada]derivada de função de raiz cúbica
por armando » Sáb Jul 20, 2013 15:22
- 4 Respostas
- 14349 Exibições
- Última mensagem por armando

Dom Jul 21, 2013 22:17
Cálculo: Limites, Derivadas e Integrais
-
- [DERIVADA] DERIVADA POR DEFINIÇÃO DA RAIZ DO MÓDULO DE X
por Matheusgdp » Qua Set 16, 2015 04:07
- 2 Respostas
- 4858 Exibições
- Última mensagem por Matheusgdp

Qui Set 17, 2015 18:31
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
função demanda
Autor:
ssousa3 - Dom Abr 03, 2011 20:55
alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear
Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato
Assunto:
função demanda
Autor:
ssousa3 - Seg Abr 04, 2011 14:30
Gente alguém por favor me ensine a calcular a fórmula da função demanda

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.