• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Lucro máximo

Lucro máximo

Mensagempor Dih » Dom Mar 27, 2011 01:43

Não estou conseguindo concluir esta questão:

1- Uma firma estima que x unidades de seu produto podem ser vendidas semanalmente ao preço, dado pela função, P(x) = (1100 - x) reais. Se o custo de produção de x unidades é C(x) = 3000 + 100x, determine então o lucro máximo.

Fiz assim:

R(x) = p * q
L(x) = r - c

R(x) = (1100 - x) * x
R(x)= 1100x - x^2


L(x)= 1100x - x^2 - (3000+100x)
-3000 - 100x + 1100 - x^2
x^2 + 1000x - 3000

Xv= -b/2a -> -1000/2 -> Xv=500



X^2 + 1000x-3000 =747000
________________________________// _____________________

Diferente do GABARITO oficial = 247000


Ajuda ae! Onde estou errando ?
Dih
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Mar 27, 2011 01:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Lucro máximo

Mensagempor LuizAquino » Dom Mar 27, 2011 09:59

Dih escreveu:L(x)= 1100x - x^2 - (3000+100x)
-3000 - 100x + 1100 - x^2
x^2 + 1000x - 3000


Reveja a sua função para o lucro. Ele deveria ficar como L(x)=-x^2+1000x-3000.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Lucro máximo

Mensagempor Dih » Qui Mar 31, 2011 19:37

Saquei...
erro no final...
Fazendo corretamente -500^2 .... chego na resposta correta

valeu
Dih
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Mar 27, 2011 01:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}