por 0 kelvin » Ter Mar 22, 2011 19:47
Um dos primeiros exercicios do livro Apostol para fazer é
![\int_{-1}^{3}[x]dx \int_{-1}^{3}[x]dx](/latexrender/pictures/5c0a6282f3363e09385571f01b651dbf.png)
e diz que [x] representa um inteiro menor ou igual a x.
Entendi o gráfico da função escada que fica assim
http://www.wolframalpha.com/input/?i=in ... rt+of+x%29 somando as áreas dá 2. Mas a resposta não precisa do gráfico, ou pelo menos esta dizendo para calcular sem mencionar o gráfico.
Então sem o gráfico: entendi que tem que "jogar" -1 e 3 no x, daí vem a sequência -1, 0, 1, 2 e 3 que são os valores que a função assume nesse intervalo. Depois disso, seguindo o raciocínio do Apostol, tem que visualizar as partições (segmentos como no gráfico aí em cima). Assumindo que é uma função f(x) = x (o gráfico fica sendo a reta que passa pela origem e tem y = x para todos os pontos, vi isso com o grupo de estudos. Da reta da função vem os pontos da função escada, fechada a esquerda e aberta a direita). A parte mais complicada esta sendo a notação. Os intervalos, por exemplo o primeiro, fica

. A função vale -1 nesse ponto e tem "base da partição" -1 tambem. Daí a soma, tem o símbolo da somatória, ou o professor disse q tb pode escrever

. As partições escreve base x altura ou altura x base, tanto faz? Na notação do grupo de estudos ficou

= -1 . (0 -(-1)) + 0 . (-1 . 0) + 1 . (2 - 1) + 2 . (3 - 2)
Sobre o Apostol: até essa parte de funções fáceis de integrar esta bem, nada muito dificil.
-
0 kelvin
- Usuário Parceiro

-
- Mensagens: 78
- Registrado em: Dom Out 31, 2010 16:53
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciencias atmosfericas
- Andamento: cursando
por LuizAquino » Ter Mar 22, 2011 21:16
Primeiro, temos que esclarecer as definições.
Usualmente, a notação [x] representa o maior inteiro que seja menor ou igual a x. Uma outra notação é

.
No livro de Cálculo do Apostol (volume 1) parece que ele define isso como sendo a mesma coisa que a "parte inteira de x". Mas, veja que isso só se aplica para números positivos! Por exemplo, note que a parte inteira de -0,5 é 0. Por outro lado, -1 é o maior número inteiro que é menor ou igual a -0,5, isto é, [-0,5] = -1.
O gráfico da função f(x)=[x] no intervalo [-1, 3] está representado abaixo.

- função-chao.png (1.88 KiB) Exibido 2808 vezes
Vale lembrar que essa função também é conhecida como função "chão" ou "piso" (ou ainda
floor, em inglês).
Leia mais a respeito na Wikipédia:
Parte inteirahttp://pt.wikipedia.org/wiki/Parte_inteira
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Limite - usando apenas limites notáveis
por emsbp » Seg Jul 23, 2012 16:45
- 2 Respostas
- 1968 Exibições
- Última mensagem por emsbp

Ter Jul 24, 2012 16:50
Cálculo: Limites, Derivadas e Integrais
-
- Fatoração - consegui fazer apenas o óbvio
por IsadoraLG » Qua Jul 09, 2014 21:19
- 1 Respostas
- 1394 Exibições
- Última mensagem por e8group

Qui Jul 10, 2014 02:12
Álgebra Elementar
-
- Descobrindo a Expressão Algébrica olhando apenas o gráfico
por Ricardogferreira » Seg Jul 23, 2012 21:19
- 12 Respostas
- 12412 Exibições
- Última mensagem por Ricardogferreira

Ter Jul 31, 2012 20:25
Funções
-
- Calcular um terceiro lado do triângulo com apenas dois lados
por Sohrab » Dom Jun 15, 2014 02:55
- 1 Respostas
- 1817 Exibições
- Última mensagem por e8group

Dom Jun 15, 2014 13:18
Geometria Plana
-
- Inteiros
por Gaussiano » Sex Dez 30, 2011 12:14
- 0 Respostas
- 957 Exibições
- Última mensagem por Gaussiano

Sex Dez 30, 2011 12:14
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.