• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral apenas inteiros

Integral apenas inteiros

Mensagempor 0 kelvin » Ter Mar 22, 2011 19:47

Um dos primeiros exercicios do livro Apostol para fazer é \int_{-1}^{3}[x]dx e diz que [x] representa um inteiro menor ou igual a x.

Entendi o gráfico da função escada que fica assim http://www.wolframalpha.com/input/?i=in ... rt+of+x%29 somando as áreas dá 2. Mas a resposta não precisa do gráfico, ou pelo menos esta dizendo para calcular sem mencionar o gráfico.

Então sem o gráfico: entendi que tem que "jogar" -1 e 3 no x, daí vem a sequência -1, 0, 1, 2 e 3 que são os valores que a função assume nesse intervalo. Depois disso, seguindo o raciocínio do Apostol, tem que visualizar as partições (segmentos como no gráfico aí em cima). Assumindo que é uma função f(x) = x (o gráfico fica sendo a reta que passa pela origem e tem y = x para todos os pontos, vi isso com o grupo de estudos. Da reta da função vem os pontos da função escada, fechada a esquerda e aberta a direita). A parte mais complicada esta sendo a notação. Os intervalos, por exemplo o primeiro, fica -1 \le x < 0. A função vale -1 nesse ponto e tem "base da partição" -1 tambem. Daí a soma, tem o símbolo da somatória, ou o professor disse q tb pode escrever \text{S}_{\text{n}} = . As partições escreve base x altura ou altura x base, tanto faz? Na notação do grupo de estudos ficou \text{S}_{\text{n}} = -1 . (0 -(-1)) + 0 . (-1 . 0) + 1 . (2 - 1) + 2 . (3 - 2)

Sobre o Apostol: até essa parte de funções fáceis de integrar esta bem, nada muito dificil.
0 kelvin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 78
Registrado em: Dom Out 31, 2010 16:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencias atmosfericas
Andamento: cursando

Re: Integral apenas inteiros

Mensagempor LuizAquino » Ter Mar 22, 2011 21:16

Primeiro, temos que esclarecer as definições.

Usualmente, a notação [x] representa o maior inteiro que seja menor ou igual a x. Uma outra notação é \lfloor x \rfloor.

No livro de Cálculo do Apostol (volume 1) parece que ele define isso como sendo a mesma coisa que a "parte inteira de x". Mas, veja que isso só se aplica para números positivos! Por exemplo, note que a parte inteira de -0,5 é 0. Por outro lado, -1 é o maior número inteiro que é menor ou igual a -0,5, isto é, [-0,5] = -1.

O gráfico da função f(x)=[x] no intervalo [-1, 3] está representado abaixo.
função-chao.png
função-chao.png (1.88 KiB) Exibido 2808 vezes


Vale lembrar que essa função também é conhecida como função "chão" ou "piso" (ou ainda floor, em inglês).

Leia mais a respeito na Wikipédia:
Parte inteira
http://pt.wikipedia.org/wiki/Parte_inteira
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?