• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Alguém sabe calcular essa Integral ?e?.senxdx ?

Alguém sabe calcular essa Integral ?e?.senxdx ?

Mensagempor lucat28 » Qua Mar 16, 2011 12:43

Olá senhores, estou tendo dificuldade em resolver algumas integrais por partes e queria pedir a ajuda de vocês para resolver essa questão:

\int_{}^{}e^xsenxdx


O metódo de integração é por partes mas não consigo achar a resposta certa.
a resposta é:
\frac{1}{2}e^x(senx-cosx)+c

desde já, obrigado!
lucat28
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qua Mar 16, 2011 12:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Alguém sabe calcular essa Integral ?e?.senxdx ?

Mensagempor Molina » Qua Mar 16, 2011 14:37

Boa tarde.

Nesta questão você terá que fazer duas substituições. Esse macete é bastante usado e provavelmente aparecerá outras questões que você terá que fazer este mesmo caminho.

\int e^xsenxdx

Por partes, temos que:

u=senx \Rightarrow du=cosxdx
dv=e^x dx \Rightarrow v=e^x

\int e^xsenxdx = \int u dv = uv - \int vdu = e^x senx - \int e^x cosx dx

Ou seja, temos que:

\int e^xsenxdx = e^x senx - \int e^x cosx dx

Precisamos usar a integração por partes novamente da integral do lado direito da igualdade:

u=cosx \Rightarrow du=-senxdx
dv=e^x dx \Rightarrow v=e^x

\int e^x cosx dx = \int u dv = uv - \int vdu = e^x cosx + \int e^x senx dx

Ou seja, temos que:

\int e^x cosx dx = e^x cosx + \int e^x senx dx

Substituindo na primeira equação:

\int e^xsenxdx = e^x senx - \int e^x cosx dx

\int e^xsenxdx = e^x senx - e^x cosx - \int e^x senx dx

2\int e^xsenxdx = e^x senx - e^x cosx

\int e^xsenxdx = \frac{1}{2}e^x (senx - cosx) + cte


Qualquere dúvida informe, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Alguém sabe calcular essa Integral ?e?.senxdx ?

Mensagempor lucat28 » Qua Mar 16, 2011 17:35

Valeu Molina!
certinho mesmo, deu pra entender legal
muito obrigado mesmo! :-D
lucat28
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qua Mar 16, 2011 12:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: