• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Graficando funções de duas variáveis com raíz quadrada

Graficando funções de duas variáveis com raíz quadrada

Mensagempor EulaCarrara » Ter Mar 15, 2011 16:50

Boa tarde!

Função dada: f(x,y)=\sqrt[2]{45-3{x}^{2}-5{y}^{2}}

Considerando Z=k (constante), me deparei com a seguinte equação:

Para k=0, 3{x}^{2}+5{x}^{2}=45
Para k=1, 3{x}^{2}+5{x}^{2}=44
...

Eis a dúvida.. as equações acima (das curvas de nível) são de uma circunferência ou de uma elipse (dividindo a equação por 45)?
E como x² e y² estão acompanhados de um número multiplicador, como chegar às curvas de nível?
EulaCarrara
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Seg Abr 19, 2010 21:21
Formação Escolar: GRADUAÇÃO
Área/Curso: Zootecnia
Andamento: cursando

Re: Graficando funções de duas variáveis com raíz quadrada

Mensagempor LuizAquino » Ter Mar 15, 2011 17:44

Temos a função f(x,y)=\sqrt{45-3{x}^{2}-5{y}^{2}}. Fazendo z=k, ou seja, f(x, y)=k, obtemos:

3x^2 + 5y^2 = 45-k^2

Lembrando que eu só pude fazer a simplificação \left(\sqrt{45-3{x}^{2}-5{y}^{2}}\right)^2=45-3{x}^{2}-5{y}^{2}, pois temos que 45-3{x}^{2}-5{y}^{2} \geq 0 para que o contradomínio da função seja o conjunto dos números reais, e não o dos números complexos. Em outras palavras, eu estou assumindo que não pode aparecer um número negativo dentro da raiz.

Agora, dividindo tudo por 45-k^2 e arrumando a equação:

\frac{x^2}{\frac{45-k^2}{3}} + \frac{y^2}{\frac{45-k^2}{5}} = 1

Note que isso é uma elipse.

Recomendo que dê uma olhada no tópico:
[Dúvida]Gráficos de funções com duas variáveis.
viewtopic.php?f=120&t=4069
Imagem Imagem Imagem Imagem

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2649
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Graficando funções de duas variáveis com raíz quadrada

Mensagempor EulaCarrara » Qua Mar 16, 2011 20:54

LuizAquino.. Obrigada!
Até aí entendi...

Mas no caso de se atribuir valores que está me confundindo..

Por exemplo, para k=0:
\frac{{x}^{2}}{15}+\frac{{y}^{2}}{9}=1

Como seria esse desenho da elipse no esboço das curvas de nível?
EulaCarrara
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Seg Abr 19, 2010 21:21
Formação Escolar: GRADUAÇÃO
Área/Curso: Zootecnia
Andamento: cursando

Re: Graficando funções de duas variáveis com raíz quadrada

Mensagempor LuizAquino » Qua Mar 16, 2011 23:14

Há um vasto material na internet ensinando como esboçar o gráfico de uma elipse.

Com uma rápida pesquisa pelo Google, por exemplo, podemos achar a página:
Gráficos de Equações
http://www.dmm.im.ufrj.br/projeto/precalculo1/sala/conteudo/capitulos/cap31s4.html
Imagem Imagem Imagem Imagem

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2649
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Graficando funções de duas variáveis com raíz quadrada

Mensagempor EulaCarrara » Qui Mar 17, 2011 09:42

Sim... Eu dei uma olhada em vários sites... Só que todos os exemplos que eu encontrei, no denominador sempre tinha números quadrados perfeitos... No caso desse exercício que estou fazendo, "15" não tem raiz exata, por isso achei que teria algo diferente no esboço da curva..

De qualquer forma, obrigada!! ;)
EulaCarrara
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Seg Abr 19, 2010 21:21
Formação Escolar: GRADUAÇÃO
Área/Curso: Zootecnia
Andamento: cursando

Re: Graficando funções de duas variáveis com raíz quadrada

Mensagempor LuizAquino » Qui Mar 17, 2011 10:13

Não há mistério algum. Basta calcular a raiz quadrada aproximada.
Imagem Imagem Imagem Imagem

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2649
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Graficando funções de duas variáveis com raíz quadrada

Mensagempor EulaCarrara » Qui Mar 17, 2011 20:03

Ok ok!

O gráfico final foi um "semi" elipslóide invertido..

LuizAquino, muito obrigada *-*

Abraços!
EulaCarrara
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Seg Abr 19, 2010 21:21
Formação Escolar: GRADUAÇÃO
Área/Curso: Zootecnia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D