• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Outra ED.

Outra ED.

Mensagempor Higor » Seg Fev 21, 2011 15:52

Boa Tarde Pessoal.

Estou fazendo um exercicio, mas esta dando um valor nao muito convencional, vamos la
talvez vcs possam me ajudar:

EXERCICIO:

\frac{dy}{dt} = \frac{t.e^t}{y.\sqrt[]{1+y^2}}

Começei da seguinte forma:

\int_{}^{} y \sqrt[]{1+y^2} dy  = [tex]\int_{}^{} t.e^t dt

na parte t.e^t dt


resolvi por partes

u= t dv= e^t
du = 1 v= e^t

u.v - \int_ v. du

= t. e^t - e^t


=\int_{}^{} y \sqrt[]{1+y^2} dy  =   t. e^t - e^t

bom, agora a primeira parte

\int_{}^{} y \sqrt[]{1+y^2} dy

u=1+y^2
du= 2y dy
du/2= y dy

assim :

\frac{1}{2} \int_{}^{}\sqrt[]{u} du

subistitui

raiz de u por u^1/2

e integrei

\frac{1}{2} * \frac{(2u^\frac{3}{2})}{3}

\frac{(2u^\frac{3}{2})}{6}

voltando o valor de u

\frac{2(1+y^2)^\frac{3}{2}}{6}

\frac{(1+y^2)^\frac{3}{2}}{3}

ai chego até esse ponto:

\frac{(1+y^2)^\frac{3}{2}}{3} = t.e^t - e^t

nao sei se esta certo, por favor me ajudem ai.
Higor
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Dom Fev 20, 2011 17:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Computação
Andamento: cursando

Re: Outra ED.

Mensagempor Marcampucio » Seg Fev 21, 2011 16:48

Está tudo certo, sim.
A revelação não acontece ao encontrar o sábio no alto da montanha. A revelação vem com a subida da montanha.
Marcampucio
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Ter Mar 10, 2009 17:48
Localização: São Paulo
Formação Escolar: GRADUAÇÃO
Área/Curso: geologia
Andamento: formado

Re: Outra ED.

Mensagempor Higor » Seg Fev 21, 2011 17:04

Mas, ainda nao chegou ao fim ?? tem mais alguma coisa não tem ???
Higor
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Dom Fev 20, 2011 17:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)