por luciamoura » Sex Nov 26, 2010 17:55
Primeiramente gostaria de pedir desculpas pelo incomodo. Gostaria da opinião de vocês sobre a resolução de uma questão referente à multiplicadores de Lagrange.
A questão é a seguinte:
Uma certa sonda espacial possui formato de um elipsoide 4*x^2+ y^2+4*z^2 = 16.
Sabendo-se que a temperatura (C) sobre a sua superfcie é modelada pela formula
T(x; y; z) = 8*x^2 + 4*y*z ? 16*z + 600, encontre o ponto mais quente.
Primeiramente eu isolei "x" na equação do elipsóide, substituí na equação da temperatura e calculei as derivadas parciais com relação a "y" e a "z". Entretanto, obtive como resposta uma equação com raízes complexas. Depois tentei usar um software matemático (Mathematica e o Maple) para calcular os valores das equações obtidas pelos multiplicadores de Lagrange, tomando T(x,y,z) como a função a sex maximizada e obtive 7 pontos P(x,y,z). Gostaria de saber se essa segunda forma de resolver é a correta (uso de software). Caso não, você poderia me dar alguma dica para a resolução do problema.
A questão encontra-se na página do ICMC da USP:
http://www.icmc.usp.br/~matofu/2-2010/s ... 4-2010.pdf (5º quesito)
Agradeço desde já,
Lúcia.
-
luciamoura
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Sex Nov 26, 2010 17:45
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Multiplicadores de Lagrange
por Zkz » Sex Jun 05, 2009 21:00
- 0 Respostas
- 1855 Exibições
- Última mensagem por Zkz

Sex Jun 05, 2009 21:00
Cálculo: Limites, Derivadas e Integrais
-
- multiplicadores de lagrange
por jeison87 » Seg Set 22, 2014 21:11
- 1 Respostas
- 2106 Exibições
- Última mensagem por adauto martins

Qua Out 08, 2014 16:06
Cálculo: Limites, Derivadas e Integrais
-
- Calculo - multiplicadores de Lagrange
por brunnoguilherme » Dom Jan 13, 2013 20:01
- 1 Respostas
- 1378 Exibições
- Última mensagem por timoteo

Dom Jan 13, 2013 23:07
Cálculo: Limites, Derivadas e Integrais
-
- Calculo - multiplicadores de Lagrange
por brunnoguilherme » Dom Jan 13, 2013 20:04
- 1 Respostas
- 1399 Exibições
- Última mensagem por Russman

Dom Jan 13, 2013 22:12
Cálculo: Limites, Derivadas e Integrais
-
- Máximos e mínimos (Lagrange)
por Danilo » Qui Mai 29, 2014 21:23
- 0 Respostas
- 963 Exibições
- Última mensagem por Danilo

Qui Mai 29, 2014 21:23
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.