por HenriquePegorari » Dom Jul 25, 2010 17:26
Olá, preciso muito da ajuda sobre o método de integração por substituição, quando formos substituir por Du o que devemos fazer com a função?Derivar?
-
HenriquePegorari
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Dom Jul 25, 2010 17:09
- Formação Escolar: ENSINO FUNDAMENTAL II
- Área/Curso: Física
- Andamento: cursando
por Molina » Seg Jul 26, 2010 14:59
HenriquePegorari escreveu:Olá, preciso muito da ajuda sobre o método de integração por substituição, quando formos substituir por Du o que devemos fazer com a função?Derivar?
Boa tarde, Henrique
Isso mesmo, preciso derivar as substituições que você considerar. Vou dar um exemplo para ver se fica mais fácil do que ficar passando teorias..

Há formulas prontas para este tipo de integração, mas o mais simples é resolver por substituição mesmo. Veja:
Se eu chamar
2x de
u, tenho que
Derivando de ambos os lados da igualdade...

Fazendo a
substituição na nossa integral, temos que:

E agora integrar cosseno é simples...

Só que minha integral é em relação a x e não a u, então faça a substituição inversa, de
u para
x...

Espero ter ajudado. Qualquer coisa crie um tópico com as questões que você tiver mais dificuldades.
Bom estudo,

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por HenriquePegorari » Ter Jul 27, 2010 11:35
ENTÃO DEVEMOS PRIMEIRAMENTE ESCOLHER QUAL SERÁ SUBSTITUIDO POR U E DU, DEPOIS DERIVAMOS TANTO O U QUANTO O DU, CALCULAMOS A INTEGRAL DISSO E DEPOIS PASSAMOS PARA A FORMA DE "X"
-
HenriquePegorari
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Dom Jul 25, 2010 17:09
- Formação Escolar: ENSINO FUNDAMENTAL II
- Área/Curso: Física
- Andamento: cursando
por MarceloFantini » Ter Jul 27, 2010 12:54
Você faz a escolha do u, deriva e encontra

, calcula a integral e depois volta para a variável x.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Método da substituição
por leticiapires52 » Ter Out 06, 2015 18:04
- 2 Respostas
- 2816 Exibições
- Última mensagem por leticiapires52

Ter Out 06, 2015 20:15
Cálculo: Limites, Derivadas e Integrais
-
- [Integrais] Método da substituição
por Gabriel_1403 » Sáb Set 29, 2012 14:50
- 1 Respostas
- 1381 Exibições
- Última mensagem por MarceloFantini

Sáb Set 29, 2012 15:26
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Método da Substituição
por raimundoocjr » Sáb Jul 27, 2013 13:04
- 2 Respostas
- 1852 Exibições
- Última mensagem por raimundoocjr

Sáb Jul 27, 2013 18:02
Cálculo: Limites, Derivadas e Integrais
-
- Integração por substituição
por manuoliveira » Seg Out 22, 2012 22:33
- 2 Respostas
- 1684 Exibições
- Última mensagem por manuoliveira

Ter Out 23, 2012 00:49
Cálculo: Limites, Derivadas e Integrais
-
- integração por substituição
por medeiro_aa » Seg Dez 07, 2015 18:35
- 2 Respostas
- 3241 Exibições
- Última mensagem por medeiro_aa

Qua Mar 02, 2016 11:44
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.