• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Como verifico esta afirmação? (integral)

Como verifico esta afirmação? (integral)

Mensagempor rafaelmtmtc » Dom Abr 18, 2010 19:41

\int_{}^{} \frac{1}{1+{x}^{2}} dx = arc tg x + K


grato pela atenção
rafaelmtmtc
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sáb Abr 18, 2009 18:08
Formação Escolar: GRADUAÇÃO
Área/Curso: lic/bac matematica
Andamento: cursando

Re: Como verifico esta afirmação? (integral)

Mensagempor Elcioschin » Seg Abr 19, 2010 14:15

Lembre-se que:

d(tgu) = sec²u*du
sec²u = 1 + tg²u

Fazendo x = tgu no seu problema teremos:

a) 1/(1 + x²) = 1/(1 + tg²u) = 1/sec²u

b) dx = d(tgu) ----> dx = sec²u*du

c)u = arctgx

Int[1/(1 + x²)*dx = Int[(1/sec²u)sec²udu] = Int[du] = u = arctgx + K
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Como verifico esta afirmação? (integral)

Mensagempor rafaelmtmtc » Seg Abr 19, 2010 15:57

muito grato pela atenção Elcioschin, você não sabe o quanto me ajudou.

um abraço.
rafaelmtmtc
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sáb Abr 18, 2009 18:08
Formação Escolar: GRADUAÇÃO
Área/Curso: lic/bac matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)