• Anúncio Global
    Respostas
    Exibições
    Última mensagem

problema de limites

problema de limites

Mensagempor juflamanto » Sex Ago 07, 2015 18:05

Estou tentando calcular um limite,porem travei em um certo ponto.
limite de x quando tende a -5 pela direita ((abs(3+2x-x^2)-32)/((x^2)+(3x)-10)
ja fatorei,mas nao consegui sair dessa parte -(x+1)(x-3)-32/(x-2)(x+5).
Aqui tem o link do Wolfram: http://www.wolframalpha.com/input/?i=li ... x%29-10%29
juflamanto
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Ago 07, 2015 17:55
Formação Escolar: GRADUAÇÃO
Área/Curso: fisica
Andamento: cursando

Re: problema de limites

Mensagempor nakagumahissao » Sáb Ago 08, 2015 12:18

\lim_{x\rightarrow {(-5)}^{+}} \frac{\left| 3 + 2x - x^2 \right| - 32}{x^2 + 3x - 10}

Temos aqui uma indefinição do tipo 0/0. Assim, aplicando L'Hôpital teremos:

\lim_{x\rightarrow {(-5)}^{+}} \frac{ \frac{d}{dx} \left(\left| 3 + 2x - x^2 \right| - 32\right)}{\frac{d}{dx}\left(x^2 + 3x - 10 \right)} = \lim_{x\rightarrow {(-5)}^{+}} \frac{\left|2 - 2x \right|}{2x + 3}

\frac{\left|2 - 2(-5) \right|}{2(-5) + 3} =  \frac{\left|2 + 10 \right|}{-10 + 3} = \frac{ \pm \sqrt{{12}^{2}}}{-7} = \frac{12}{7}

Foi escolhido o valor positivo porque vindo da direita esses valores são positivos. Experimente substituir x = 4 e verá que o resultado será positivo.
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: