• Anúncio Global
    Respostas
    Exibições
    Última mensagem

problema

problema

Mensagempor ricks » Qua Mai 13, 2015 21:18

queria achar a hipotenusa de um triangulo sendo que há um angulo interno de 45º e a altura de 4 m
ricks
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Mai 05, 2015 22:14
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: problema

Mensagempor nakagumahissao » Dom Jul 19, 2015 11:47

Há duas formas de se resolver este problema.

1) Se o ângulo interno vale 45 graus, então, o cateto oposto e o cateto adjacente valem o mesmo valor, ou seja, 4 cada. Assim, usando pitágoras teremos:

4^2 + 4^2 = h^2 \Rightarrow h^2 = 16 + 16 = 32 \Rightarrow h = \sqrt[]{32} \Rightarrow h = 4\sqrt[]{2}

2) Usando o fato de que:

\sin(45 = \pi / 4) = \frac{\sqrt[]{2}}{2}

então:

4 = h \sin \left(\frac{\pi}{4} \right) = h \frac{\sqrt[]{2}}{2}

h =  \frac{4 \times 2}{\sqrt[]{2}} = \frac{8}{\sqrt[]{2}}

Racionalizando o denominador tem-se que:

h =   \frac{8}{\sqrt[]{2}} \times \frac{\sqrt[]{2}}{\sqrt[]{2}}

h =  8 \frac{\sqrt[]{2}}{2}h =  4\sqrt[]{2}
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59