por Mateusus » Ter Abr 21, 2015 09:18
[Não consigo identificar se uma função é limitada] Essa função é limitada? Gostaria de saber o motivo de ela ser limitada ou não:

-
Mateusus
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qui Fev 05, 2015 19:06
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por adauto martins » Qua Abr 22, 2015 20:54
uma funçao eh limitada,qdo existe um

,tal q. p/ qquer x,tem-se


eh tal q.

,ou seja f(x) e limitada inferiormente e superiormente,em funçao do seno...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- FUNÇÃO LIMITADA
por jonas556440 » Ter Nov 11, 2014 10:27
- 1 Respostas
- 2980 Exibições
- Última mensagem por adauto martins

Ter Nov 11, 2014 20:11
Cálculo: Limites, Derivadas e Integrais
-
- [função limitada] como reconhecer uma?
por Fabio Wanderley » Dom Dez 09, 2012 20:07
- 3 Respostas
- 25582 Exibições
- Última mensagem por Fabio Wanderley

Seg Dez 10, 2012 10:53
Cálculo: Limites, Derivadas e Integrais
-
- ANÁLISE REAL: FUNÇÃO LIMITADA
por renataribeiro2017 » Sex Set 08, 2017 12:28
- 2 Respostas
- 5816 Exibições
- Última mensagem por adauto martins

Ter Mai 01, 2018 21:16
Cálculo: Limites, Derivadas e Integrais
-
- AREA LIMITADA
por ELCIO GOMES DE SOUZA » Dom Ago 24, 2008 16:55
- 3 Respostas
- 6983 Exibições
- Última mensagem por admin

Ter Ago 26, 2008 19:02
Cálculo: Limites, Derivadas e Integrais
-
- região R limitada
por Ana Maria da Silva » Qui Out 31, 2013 11:14
- 2 Respostas
- 1854 Exibições
- Última mensagem por Ana Maria da Silva

Seg Nov 04, 2013 20:54
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.