• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite Trigonométrico]

[Limite Trigonométrico]

Mensagempor _R Junior_ » Dom Mar 22, 2015 15:12

Pessoal, tô tendo um trabalhinho com essa questão aqui. Tentei mexer até chegar na fundamental, mas por algum motivo não tá dando certo, me perdi no caminho kk

\lim_{\chi\rightarrow\pi/2} \frac{cos(2x) +1}{2x - \pi}
_R Junior_
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Mar 22, 2015 14:50
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Limite Trigonométrico]

Mensagempor adauto martins » Ter Mar 24, 2015 13:12

L=\lim_{x\rightarrow \pi/2}(cos2x-cos\pi)/(2x-\pi)=\lim_{x\rightarrow \pi/2}-2.sen((2x+\pi)/2)sen((2x-\pi))/(2x-\pi)=-\lim_{x\rightarrow \pi/2}sen((2x-\pi)/2).\lim_{(2x-\pi)/2\rightarrow 0}sen((2x-\pi)/2)/((2x-\pi)/2)=-\lim_{x\rightarrow \pi/2}sen((2x+\pi)/2).1=-sen((2.(\pi/2)+(\pi/2))/2)=-sen(3\pi/4)
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [Limite Trigonométrico]

Mensagempor adauto martins » Ter Mar 24, 2015 13:17

uma correçao...
L=-\lim_{x\rightarrow \pi/2}sen((2x-\pi)/2)=-sen((2.(\pi/2)+\pi)/2)=-sen(2.\pi/2)=-sen\pi=0
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)