• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral trigonométrica]

[Integral trigonométrica]

Mensagempor vitor_jo » Ter Fev 10, 2015 02:09

Senhores, uma questão do Guidorizzi,
\int_{0;\pi/3 }^{}{}sexcos²x dx [definida de 0 a pi/3]

Eu cheguei até -cos³x/3| de 1/2 a 1, mas não sei como proceder para o resultado (R.:7/24)

Também findei em uma outra, com sen^(6)x/6 | de 0 a 1/2 e não sei como seguir...

Obrigado desde já.
vitor_jo
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Qua Jan 14, 2015 05:36
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Economia
Andamento: cursando

Re: [Integral trigonométrica]

Mensagempor vitor_jo » Ter Fev 10, 2015 02:09

[é senxcos²x]
vitor_jo
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Qua Jan 14, 2015 05:36
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Economia
Andamento: cursando

Re: [Integral trigonométrica]

Mensagempor Russman » Ter Fev 10, 2015 04:00

A integral é

I =\int_{0}^{\frac{\pi}{3}}\sin(x) \cos^2(x)dx

[I =\int_{0}^{\frac{\pi}{3}}\sin(x) \cos^2(x)dx ]

Se sim, faça a substituição u(x) = \cos(x). Daí, du = - \sin(x) dx e

I =\int_{0}^{\frac{\pi}{3}}\sin(x) \cos^2(x)dx = -\int_{u(0)}^{u\left ( \frac{\pi}{3} \right )}u^2 du

cuja forma final é facilmente calculável.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Integral trigonométrica]

Mensagempor vitor_jo » Ter Fev 10, 2015 14:19

Quando você realiza essa substituição, tem de se mudar o intervalo, não?
De modo que cos(x)=u
cos0=1=u
cos(pi/3)=cos(60)=1/2=u
Ou seja, passo para a definida de 1/2 a 1.
A resposta não bate.
vitor_jo
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Qua Jan 14, 2015 05:36
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Economia
Andamento: cursando

Re: [Integral trigonométrica]

Mensagempor Russman » Ter Fev 17, 2015 18:15

Isto. Eu mudei o intervalo de integração como você disse, só deixei para você calcular.

A integral de x^2 é (1/3)x^3. De 1/2 até 1 será

(1/3)((1/8) - 1) = (1/3)(-7/8) = -7/24

O sinal negativo some com o negativo da mudança de variável.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Integral trigonométrica]

Mensagempor vitor_jo » Qua Fev 18, 2015 04:48

É vero, eu tinha me confundido. Obrigado.
vitor_jo
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Qua Jan 14, 2015 05:36
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Economia
Andamento: cursando

Re: [Integral trigonométrica]

Mensagempor Russman » Qua Fev 18, 2015 06:55

(:
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.