• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites por definição.

Limites por definição.

Mensagempor lucassouza » Qui Jan 29, 2015 18:50

Olá pessoal que me ajuda muito. Nesta questão não entendi o por que desta suposição que foi feita para resolver. Está grifado em amarelo. Por favor, gostaria de uma simples explicação para que possa entender. Grato desde já!
Anexos
limites.JPG
Por quê foi feita esta suposição??
lucassouza
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Seg Set 15, 2014 15:03
Formação Escolar: SUPLETIVO
Andamento: cursando

Re: Limites por definição.

Mensagempor adauto martins » Sáb Jan 31, 2015 18:31

dado um \epsilon\succ 0,eh procurar um \delta\succ 0 q. satisfaça a definiçao do limite...ou seja...
\left|{x}^{2}-1 \right|\prec \epsilon...entao:
\left|{x}^{2}-1 \right|=\left|(x+1).(x-1) \right|\preceq \left|x+1 \right|.\left|x-1 \right|\prec\left|x+1 \right|.\delta,\left|x+1 \right|\preceq \left|x \right|+1,podemos tomar \left|x \right|\prec 1\Rightarrow \delta\left|x+1 \right|\prec \delta.(1+1)=2\delta...tomamos entao esse \delta=\epsilon/2...
entao pela definiçao temos:
dado um \epsilon=\delta/2,talq. \left|x-1 \right|\prec \epsilon/2\Rightarrow \left|{x}^{2}-1 \right|\prec \left|x+1 \right|.\epsilon/2\prec 2.\epsilon/2=\epsilon
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)