por carlos_araujo » Sex Dez 05, 2014 16:54
Olá,
estou com uma dúvida ao resolver a seguinte integral:

onde

e x são constantes.
Bem, se n for um número RACIONAL diferente de -1, pode-se fazer da seguinte maneira:

e assim, teria como resultado daquela integral o seguinte:

Porém, n tem o valor de:

onde fck varia de 50 a 90, podendo assumir valor IRRACIONAL. Por exemplo, quando fck é igual a 60, n é igual a 1,58954.
Enfim, minha dúvida é se eu posso integrar como fiz acima ou se tenho de usar exponencial (

), séries infinitas ou outro artifício por conta de n ser IRRACIONAL. E, como deveria resolver esta integral?
Desde já agradeço!!!
-
carlos_araujo
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Sex Dez 05, 2014 16:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por adauto martins » Qua Dez 10, 2014 15:27
um numero irracional e um numero real,entao vc pode integrar como integral de funçoes reais...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Integral função irracional
por manuel_pato1 » Dom Jan 20, 2013 14:16
- 2 Respostas
- 2509 Exibições
- Última mensagem por manuel_pato1

Dom Jan 20, 2013 21:08
Cálculo: Limites, Derivadas e Integrais
-
- Integral de função irracional - Dúvida!
por rubenesantos » Dom Set 25, 2011 18:35
- 5 Respostas
- 6536 Exibições
- Última mensagem por rubenesantos

Sex Set 30, 2011 10:34
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] potencia de expoente variante
por KleinIll » Sex Fev 22, 2013 11:14
- 4 Respostas
- 6246 Exibições
- Última mensagem por KleinIll

Sex Fev 22, 2013 13:06
Cálculo: Limites, Derivadas e Integrais
-
- Integral por partes? Euler com equação no expoente
por brunoterra » Seg Nov 06, 2017 23:12
- 0 Respostas
- 3140 Exibições
- Última mensagem por brunoterra

Seg Nov 06, 2017 23:12
Cálculo: Limites, Derivadas e Integrais
-
- Definição de função racional e irracional
por Soprano » Sex Set 30, 2016 19:52
- 0 Respostas
- 2524 Exibições
- Última mensagem por Soprano

Sex Set 30, 2016 19:52
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.