• Anúncio Global
    Respostas
    Exibições
    Última mensagem

integral definida

integral definida

Mensagempor fasaatyro » Seg Dez 01, 2014 22:17

calcule \int_{0}^{1}{t}^{3}*{(1+{t}^{4})}^{3}dt, preciso de ajuda urgente a resposta encontrada foi 15/16.
fasaatyro
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Seg Dez 01, 2014 21:41
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura matematica
Andamento: cursando

Re: integral definida

Mensagempor Cleyson007 » Ter Dez 02, 2014 09:13

Olá, bom dia!

Sua integral pode ser resolvida tranquilamente por uma substituição simples.

Chame u = 1 + t^4

Logo, du = 3t³ dt ---> du/3 = t³dt

Não se esqueça também de alterar os limites de integração.

Quando t = 0; u = 1

Quando t = 1; u = 2

Agora é com você! Já dei as dicas

Comente qualquer dúvida :y:

Te mandei uma mensagem privada olha lá.

Abraço
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: integral definida

Mensagempor fasaatyro » Ter Dez 02, 2014 09:53

Bom dia Cleyson agradeço a dica, mas não estou conseguindo a resposta que encontrei foi 1 e o gabarito da prova esta 15/16.

Fiz u=(1+{t}^{4})
du=4t³dt
1/4du =t³dt
fasaatyro
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Seg Dez 01, 2014 21:41
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura matematica
Andamento: cursando

Re: integral definida

Mensagempor Cleyson007 » Ter Dez 02, 2014 12:57

Olá, boa tarde!

Não tem interesse na mensagem privada que lhe enviei? ucp.php?i=pm&mode=view&f=-1&p=570

O que você fez está correto. Acompanhe:

Após fazer a mudança de variável teremos de resolver essa integral que é simples \frac{1}{4}\int_{1}^{2}{u}^{3}du

\frac{1}{4}\left ( \frac{u^{4}}{4} \right )_{1}^{2}\Rightarrow \left ( \frac{1}{4} \right )\left ( 4-\frac{1}{4} \right )=\left ( \frac{1}{4} \right )\left ( \frac{15}{4} \right )={\boxed{\frac{15}{16}}}

Qualquer dúvida estou a disposição :y:

Abraço
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.