Olá, pessoal! Preciso de ajuda para o seguinte exercício: "Determinar onde o gráfico da função dada tem concavidade positiva, onde a concavidade é negativa e obter os pontos de inflexão, caso existam."
![\sqrt[5]{x-2} \sqrt[5]{x-2}](/latexrender/pictures/3077b32665829a49219836be64d5ac4d.png)
Fiz o seguinte:
Derivei duas vezes a função dada, chegando à:

. Daí, não há pontos reais para os quais a derivada segunda da f se anula. Contudo, x = 2 está no domínio da f e é, realmente, a abscissa do ponto de inflexão, mas como chegar neste resultado usando as derivadas e sem observar o gráfico da f? Pq não deu certo?
Por favor, eu preciso muito de ajuda!
Muito Obrigada!
