• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Cálculo I] Exercício - Máximos e Mínimos

[Cálculo I] Exercício - Máximos e Mínimos

Mensagempor Pessoa Estranha » Dom Nov 16, 2014 16:53

Olá, pessoal! Boa Tarde!

Preciso de ajuda para resolver o seguinte exercício: "Um fio de comprimento L é cortado em dois pedaços, um dos quais formará um círculo e o outro, um quadrado. Como deve ser cortado o fio para que a soma das áreas do círculo e do quadrado seja máxima?"

Minha resolução:

Seja x o pedaço de L destinado ao círculo. Seja y, o do quadrado. Temos x + y = L. Sabemos que a área de um círculo é dada por: \pi {r}^{2}, onde r é o raio. Como temos o comprimento x, vem que 2 \pi r = x \rightarrow r = \frac{x}{2 \pi}. Logo, {A}_{c} = \frac{{x}^{2}}{4 \pi} é a área do círculo. Da mesma forma, temos que a área do quadrado é dada por: {A}_{q} = {a}^{2}, onde a é a medida do lado do quadrado. Mas, sabemos que 4a = y \rightarrow a = \frac{y}{4}. Logo, {A}_{q} = \frac{{y}^{2}}{16}. Para trabalharmos com uma variável, segue: x + y = L \rightarrow x = L - y \rightarrow {x}^{2} = {L}^{2} - 2Ly + {y}^{2}. Substituindo, vem que: {A}_{c} = \frac{{L}^{2} - 2Ly + {y}^{2}}{4 \pi}. Somando as duas áreas, temos: {A}_{c} + {A}_{q} = \frac{{L}^{2} - 2Ly + {y}^{2}}{4 \pi} + \frac{{y}^{2}}{16} \rightarrow {A}_{c} + {A}_{q} =  \frac{{y}^{2}(4+ \pi) - 8Ly + 4{L}^{2}}{16 \pi}. Derivando, temos: \frac{(4+ \pi)y - 4L}{3 \pi}. Daí, fazendo um estudo do sinal, não encontrei ponto de máximo, e, sim, de mínimo.

Por favor, preciso de ajuda! Muito Obrigada!
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 12:41

pessoal eu achei como resultado 180 toneladas,entretanto sei que a questão está erra pela lógica e a resposta correta segundo o gabarito é 1.800 toneladas.
me explique onde eu estou pecando na questão. resolva explicando.

78 – ( CEFET – 1993 ) Os desabamentos, em sua maioria, são causados por grande acúmulo de lixo nas encostas dos morros. Se 10 pessoas retiram 135 toneladas de lixo em 9 dias, quantas toneladas serão retiradas por 40 pessoas em 30 dias ?


Assunto: dúvida em uma questão em regra de 3!
Autor: Douglasm - Qui Jul 01, 2010 13:16

Observe o raciocínio:

10 pessoas - 9 dias - 135 toneladas

1 pessoa - 9 dias - 13,5 toneladas

1 pessoa - 1 dia - 1,5 toneladas

40 pessoas - 1 dia - 60 toneladas

40 pessoas - 30 dias - 1800 toneladas


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:18

pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:21

leandro moraes escreveu:pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.

valeu meu camarada.