• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Cálculo I] Exercício - Máximos e Mínimos

[Cálculo I] Exercício - Máximos e Mínimos

Mensagempor Pessoa Estranha » Dom Nov 16, 2014 16:53

Olá, pessoal! Boa Tarde!

Preciso de ajuda para resolver o seguinte exercício: "Um fio de comprimento L é cortado em dois pedaços, um dos quais formará um círculo e o outro, um quadrado. Como deve ser cortado o fio para que a soma das áreas do círculo e do quadrado seja máxima?"

Minha resolução:

Seja x o pedaço de L destinado ao círculo. Seja y, o do quadrado. Temos x + y = L. Sabemos que a área de um círculo é dada por: \pi {r}^{2}, onde r é o raio. Como temos o comprimento x, vem que 2 \pi r = x \rightarrow r = \frac{x}{2 \pi}. Logo, {A}_{c} = \frac{{x}^{2}}{4 \pi} é a área do círculo. Da mesma forma, temos que a área do quadrado é dada por: {A}_{q} = {a}^{2}, onde a é a medida do lado do quadrado. Mas, sabemos que 4a = y \rightarrow a = \frac{y}{4}. Logo, {A}_{q} = \frac{{y}^{2}}{16}. Para trabalharmos com uma variável, segue: x + y = L \rightarrow x = L - y \rightarrow {x}^{2} = {L}^{2} - 2Ly + {y}^{2}. Substituindo, vem que: {A}_{c} = \frac{{L}^{2} - 2Ly + {y}^{2}}{4 \pi}. Somando as duas áreas, temos: {A}_{c} + {A}_{q} = \frac{{L}^{2} - 2Ly + {y}^{2}}{4 \pi} + \frac{{y}^{2}}{16} \rightarrow {A}_{c} + {A}_{q} =  \frac{{y}^{2}(4+ \pi) - 8Ly + 4{L}^{2}}{16 \pi}. Derivando, temos: \frac{(4+ \pi)y - 4L}{3 \pi}. Daí, fazendo um estudo do sinal, não encontrei ponto de máximo, e, sim, de mínimo.

Por favor, preciso de ajuda! Muito Obrigada!
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}