• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral] usando método da substituição

[Integral] usando método da substituição

Mensagempor neoreload » Sex Nov 14, 2014 02:43

Pessoal como resolve essa:

Calcular integral usando método da substituição simples por U: \int \frac{x}{x^{4}+3}dx
Resposta: \frac{\sqrt{3}}{6}arctg\frac{x^{2}\sqrt{3}}{3}+C

Tentei fazer e me perdi todo. Porque eu comecei fazendo assim:
U=x^{4}+3
dU=4x^{3}dx
dx= \frac{dU}{4x^{3}}
Ai substituí e ficou: \int \frac{x}{U}\frac{dU}{4x^{3}}, coloquei os números para fora e cortei um X, dai ficou: \frac{1}{4}\int \frac{dU}{Ux^{2}}, onde achei que o du/u daria lnu, então finalmente ficou \frac{lnU}{4x^{2}}, ai coloquei o valor de U no lugar e cheguei no resultado: \frac{ln(x^{4}+3)}{4x^{2}}, o que é bem diferente da resposta que tem na apostila. Agradeço quem puder deixar o passo a passo bem detalhado, pq estou perdido mesmo, e pelo jeito sem saber como fazer :(
neoreload
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 27
Registrado em: Sáb Ago 09, 2014 16:15
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59