• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Duvida com L'Hospital

Duvida com L'Hospital

Mensagempor Gustavooguto » Qua Nov 12, 2014 09:30

Bom dia
Preciso encontrar o limite dessa função, mas TENHO que aplicar L'Hospital e não sei como fazer isso pois tem que "arrumar" a função.

\lim_{x \rightarrow 0}\frac{{e}^{x} - {e}^{-x} -2}{1-cos2x}

obrigado
Gustavooguto
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Set 17, 2014 10:53
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Duvida com L'Hospital

Mensagempor adauto martins » Qua Nov 12, 2014 12:25

regra de l'hospital aplica-se em casos de indeterminaçoes de limites(0/0,\infty/\infty)em sua maiorias das vezes,e tambem em outros casos como 0.\infty,{\infty}^{0},...depois se fazer certas manipulaçoes algebricas em limites(qquer livro de calculo,encontra-se)...a regra eh:\lim_{}(f(x)/g(x))=\lim_{}(df/dx)/(dg(x)/dx)...L=\lim_{x\rightarrow0}({e}^{x}-{e}^{-x}-2)/(1-cos2x)=\lim_{x\rightarrow0}({e}^{x}+{e}^{-x})/(2.cos2x)=(1+1)/2=1...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}