• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calculo de Primitiva

Calculo de Primitiva

Mensagempor Texorras » Sáb Jan 09, 2010 14:20

x^3
------------
3 + x^4


Se alguem me puder ajudar ( -------- e o traço de fracçao)
Texorras
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Jan 09, 2010 13:07
Formação Escolar: GRADUAÇÃO
Área/Curso: Informatica
Andamento: cursando

Re: Calculo de Primitiva

Mensagempor Molina » Sáb Jan 09, 2010 15:05

Boa tarde.

Faça uma substituição:

Chame u=x^4+3, com isso, du=4x^3\Rightarrow \frac{du}{4}=x^3dx

Consegue seguir agora?

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Calculo de Primitiva

Mensagempor Hel » Sáb Jan 09, 2010 15:10

Alguém pode me ajudar a resolver o gráfico f(x)= x/ln(x)
.. *-)
f´(x) = (g´(x)*h(x) - g(x)*h´(x))/(h(x))^2 = 0
..
f´(x) = ((x´)*(ln(x)) - (x)*(ln´(x)))/ln^2(x) = 0
f´(x) = (1*ln(x) - x*(1/x))/ln^2(x) = 0
f´(x) = (ln(x) - 1)/ln^2(x) = 0
..
(ln(x) - 1)/ln^2(x) = 0
ln(x) - 1 = 0
ln(x) = 1
log(x) na base e = 1
x = e
..
Não sei se esse ponto é máximo ou mínimo.
Hel
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sex Jan 08, 2010 20:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando

Re: Calculo de Primitiva

Mensagempor Texorras » Sáb Jan 09, 2010 15:11

sim .. vai dar

1/4 log(3+x^4) certo ?
Texorras
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Jan 09, 2010 13:07
Formação Escolar: GRADUAÇÃO
Área/Curso: Informatica
Andamento: cursando

Re: Calculo de Primitiva

Mensagempor Hel » Sáb Jan 09, 2010 15:13

Alguém pode me ajudar a resolver o gráfico f(x)= x/ln(x)

1- onde ela é decrescente e crescente;
2- mínimo e o máximo da função;
3- assíntotas
4- onde côncava e convexa

f´(x) = (g´(x)*h(x) - g(x)*h´(x))/(h(x))^2 = 0
..
f´(x) = ((x´)*(ln(x)) - (x)*(ln´(x)))/ln^2(x) = 0
f´(x) = (1*ln(x) - x*(1/x))/ln^2(x) = 0
f´(x) = (ln(x) - 1)/ln^2(x) = 0
..
(ln(x) - 1)/ln^2(x) = 0
ln(x) - 1 = 0
ln(x) = 1
log(x) na base e = 1
x = e
..
Hel
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sex Jan 08, 2010 20:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando

Re: Calculo de Primitiva

Mensagempor Molina » Sáb Jan 09, 2010 15:32

Boa tarde, Hel.

Por favor, respeite as regras. Crie um tópico novo para sua dúvida e não utilize um tópico de outra questão para postar a sua. Assim o fórum fica mais organizado e fica arquivado sua dúvida no local certo.

Qualquer dúvida me procure.

Faça bom uso so fórum! :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Calculo de Primitiva

Mensagempor Molina » Sáb Jan 09, 2010 15:35

Texorras escreveu:sim .. vai dar

1/4 log(3+x^4) certo ?

Isso mesmo.

Bom estudo, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Calculo de Primitiva

Mensagempor Hel » Sáb Jan 09, 2010 15:47

Desculpe Diego é o meu segundo acesso.

Att,

Helmar
Hel
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sex Jan 08, 2010 20:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.