por jeff_95 » Sex Ago 29, 2014 05:35
Alguém consegue resolver essa integral ?

Uma dica que o livro dá é fazer uma substituição que resultará numa integral que pode ser resolvida através do método das frações parciais. Porém já tentei diversas substituições e em nenhuma obtive sucesso. Se alguém puder me dar uma luz

!!!
-
jeff_95
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Sáb Nov 16, 2013 19:00
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia mecânica
- Andamento: cursando
por young_jedi » Sex Ago 29, 2014 15:34
no denominador o termo ao quadrado é mesmo um seno, não seria um senh (seno hiperbolico), ?
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por jeff_95 » Sex Ago 29, 2014 23:01
Bom, no livro está seno. Também já pensei se tratar de um erro de digitação

-
jeff_95
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Sáb Nov 16, 2013 19:00
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia mecânica
- Andamento: cursando
por young_jedi » Sáb Ago 30, 2014 15:43
No livro contém as respostas, se sim agente ja consegue determinar se foi erro de digitação.
Confesso que se for realmente seno não tenho muitas idéias para resolve-la.
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por jeff_95 » Sáb Ago 30, 2014 16:34
Hehe o livro é o stewart, e o exercício é par, não tem a resposta :/
-
jeff_95
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Sáb Nov 16, 2013 19:00
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia mecânica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Integral por Frações Parciais
por Bruhh » Qua Set 29, 2010 18:20
- 2 Respostas
- 5297 Exibições
- Última mensagem por Bruhh

Qui Set 30, 2010 08:40
Cálculo: Limites, Derivadas e Integrais
-
- [integral] fraçoes parciais
por ewald » Qui Set 08, 2011 15:10
- 1 Respostas
- 2021 Exibições
- Última mensagem por Neperiano

Qui Set 08, 2011 15:47
Cálculo: Limites, Derivadas e Integrais
-
- integral frações parciais
por paolaads » Seg Out 22, 2012 21:08
- 3 Respostas
- 2324 Exibições
- Última mensagem por MarceloFantini

Ter Out 23, 2012 18:56
Cálculo: Limites, Derivadas e Integrais
-
- Integral com fracões parciais
por menino de ouro » Dom Nov 25, 2012 17:29
- 4 Respostas
- 3050 Exibições
- Última mensagem por menino de ouro

Dom Nov 25, 2012 21:59
Cálculo: Limites, Derivadas e Integrais
-
- Integral com fracões parciais
por menino de ouro » Seg Nov 26, 2012 21:43
- 1 Respostas
- 1586 Exibições
- Última mensagem por MarceloFantini

Ter Nov 27, 2012 00:56
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
[calculo] derivada
Autor:
beel - Seg Out 24, 2011 16:59
Para derivar a função
(16-2x)(21-x).x
como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?
Assunto:
[calculo] derivada
Autor:
MarceloFantini - Seg Out 24, 2011 17:15
Você poderia fazer a distributiva e derivar como um polinômio comum.
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:26
Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:31
derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.