• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite

Limite

Mensagempor Carolminera » Seg Jul 21, 2014 18:13

Seja f: R -> R uma função diferenciável em um ponto a E R(reais). Calcule, em termos de f ' (a), o limite:

\lim_{x -> 0}    \frac{f(x)- f(a)}{\sqrt[]{x} - \sqrt[]{a}}


Alguém pode me ajudar?
Obrigada desde já!
Carolminera
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Qua Jul 02, 2014 15:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Física Médica
Andamento: cursando

Re: Limite

Mensagempor e8group » Ter Jul 22, 2014 01:48

Dica :

Multiplique em cima e em baixo por \sqrt{x} - \sqrt{a} e dps utilize regra operatória limites .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor Carolminera » Ter Jul 22, 2014 10:41

Poderia demonstrar como fica? É que eu realmente não estou entendendo como fazer a operação, o exercício para mim está meio confuso.
Carolminera
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Qua Jul 02, 2014 15:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Física Médica
Andamento: cursando

Re: Limite

Mensagempor e8group » Ter Jul 22, 2014 11:23

Primeiro traduzimos a hipótese na linguagem dos limites ...

Dizer que f é diferenciável em um ponto a implica em dizer que o limite \lim_{x\to a } \frac{f(x) - f(a)}{x-a} = \lim_{h\to 0}  \frac{f(a+h) - f(a) }{h} \in \mathbb{R} existe e uma notação para designar esta afirmação é f'(a) .

Agora note que desejamos computar o limite \lim_{x\to a} \frac{f(x)- f(a)}{ \sqrt{x} - \sqrt{a} } . Nosso objetivo é escrever \frac{f(x)- f(a)}{ \sqrt{x} - \sqrt{a} } como \frac{f(x) - f(a)}{x-a} g(x) (tal que \lim_{x\to a} g(x) existe ) para que possamos aplicar a regra operatória do produto (vide livros de cálculo 1) .

Utilizando que (w+p)(w-p) = w^2 - p^2 , nós temos que (\sqrt{x} - \sqrt{a})(\sqrt{x} + \sqrt{a}) = (|x| - |a|) = x-a (estar implícito a positividade de a ) (*) .

Como sugerir ... ( no primeiro membro estamos multiplicando por uma quantidade não nula e dividindo pela mesma quantidade , estamos trabalhando com x mt próximo de a , mas differente de a ; no segundo membro usamos o resultado marcado por (*) ) o limite desejado equivale a calcular o seguinte limite

\lim_{x\to a} \frac{f(x)- f(a)}{ \sqrt{x} - \sqrt{a} }  \cdot \frac{\sqrt{x} + \sqrt{a}}{\sqrt{x} + \sqrt{a}}  = \lim_{x\to a} \frac{f(x) - f(a)}{x-a} \cdot (\sqrt{x} + \sqrt{a}) .

Tendo em conta que ambos limites abaixo existem ,

\lim_{x\to a}  \frac{f(x) - f(a)}{x-a} = f'(a) (hipótese )

\lim_{x\to a} \sqrt{x} + \sqrt{a} =  \sqrt{a} + \sqrt{a} = 2 \sqrt{a} , então podemos aplicar a regra operatória do produto para obter \lim_{x\to a} \frac{f(x)- f(a)}{ \sqrt{x} - \sqrt{a} } = 2 f'(a) \sqrt{a} .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59