• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Como calcular essa integral ?!

Como calcular essa integral ?!

Mensagempor lucasAS » Dom Jun 01, 2014 16:44

\int\limits_{-3}^{3}(\sqrt{9-x^2}+x^{13}e^{2x+1}+cos(3x-6)-sen(4x)+\frac{x}{(x^2+1)(x^2+2)}dx


Sei que pode afirmar q varias dessa integrais sao 0.. e calcular apenas algumas.. mas n sei como fazer isso,nen quais cortar..

Se puderem me explicar..
Obrigado !
lucasAS
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Mai 31, 2014 19:06
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Como calcular essa integral ?!

Mensagempor e8group » Qua Jun 04, 2014 16:00

Proposição :

Se f é uma função impar integrável em um intervalo fechado cujos os extremos do intervalo são números simétricos , então a integral de f sobre este intervalo vale zero .

Lembrando que f é impar se ocorrer x ,-x estão em Dom(f) e f(x) = -f(-x) .


Por simplicidade , vamos "chamar" a própria regra de associação ou lei de formação , da função f , de função . Assim, vamos dizer a função f(x) ...

Do integrando , a segunda e as duas ultimas 'funções ' são impares (em ordem da esquerda para a direita)[deixo vc verificar este fato !] e estas 'funções ' são continuas no intervalo [-3,3] e portanto integrável sobre este intervalo .Graças a proposição acima , o integral sobre [-3,3] destas 'funções ' valem zero . Usando a linearidade da integral , as contas se resumem a

\int_{-3}^{3} \sqrt{9-x^2} dx + \int_{-3}^{3} cos(3x-6) dx .

Consegue avançar ??
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.