• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Cálculo] Integral

[Cálculo] Integral

Mensagempor Pessoa Estranha » Dom Jan 12, 2014 16:15

Olá, pessoal! Estou com problemas no seguinte exercício:

"CALCULE O VOLUME DO SÓLIDO OBTIDO PELA ROTAÇÃO, EM TORNO DO EIXO X, DO CONJUNTO DE TODOS OS PARES (X,Y) TAIS QUE:

H) 0\leq Y\leq X E {X}^{2}+{Y}^{2}\leq 2."

Minha resolução:

\int_{0}^{\sqrt[]{2}} \pi (2-{x}^{2})dx = 2.\sqrt[]{2}\pi - \frac{2.\sqrt[]{2}\pi}{3} = \frac{4.\sqrt[]{2}\pi}{3}

Está errado. Por que?

Obrigada! (Pessoal, é urgente!)
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Cálculo] Integral

Mensagempor Guilherme Pimentel » Seg Jan 13, 2014 00:09

Se eu entendi direito, vc tem duas regiões, logo tem q dividir a integral em duas:

região plana.jpg
Região Plana
região plana.jpg (11.27 KiB) Exibido 2521 vezes


V=\pi \int_{0}^{1}x^2dx+\pi \int_{1}^{\sqrt{2}}(2-x^2)dx = \frac{4}{3} (\sqrt{2}-1) \pi
Guilherme Pimentel
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Dom Jan 12, 2014 19:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática/Economia
Andamento: formado

Re: [Cálculo] Integral

Mensagempor Pessoa Estranha » Ter Jan 14, 2014 09:07

A sua resolução está certa, mas por que a minha não deu certo?

Obrigada por responder!
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Cálculo] Integral

Mensagempor Guilherme Pimentel » Qua Jan 15, 2014 04:48

Vc considerou que toda a função a ser integrada era a circunferencia, ignorou a parte que é reta. Dito de outra forma, vc calculou o volume de um hemisferio de raio r = \sqrt{2} \rightarrow V=\frac{2}{3} \cdot \pi \cdot r^3 =\frac{4}{3} \cdot \pi \cdot\sqrt{2}
Guilherme Pimentel
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Dom Jan 12, 2014 19:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática/Economia
Andamento: formado

Re: [Cálculo] Integral

Mensagempor Pessoa Estranha » Qua Jan 15, 2014 09:13

Entendi! Obrigada! :y:
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}