• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[INTEGRAL DUPLA] Área do conjunto de integração

[INTEGRAL DUPLA] Área do conjunto de integração

Mensagempor Matemagica » Sáb Dez 14, 2013 05:31

É possível calcular a área da região B delimitada pelas curvas x = y² + 1 e x + y = 3? Se sim, calcule.

Sei que posso encontrar a área do conjunto de integração B através da integral dupla da função constante f(x,y) = 1, assim:
{A}_{B}=\int_{} \int_{B} 1  dx dy

mas como calcular a área compreendida entre essas curvas?
Quer dizer, como transformo a área entre elas no meu conjunto B?

Pensei em fazer a interseção delas, para ver onde se encontram.. fiz isso:

y = {x}^{2} + 1

x + y = 3

 \Rightarrow x + ({x}^{2} + 1) = 3 

\Rightarrow  {x}^{2} + x - 2 = 0

\Rightarrow x = 1 ou x = -2

assim, vai estar variando em [-2,1] em x.

e y variando entre as funções,
y = {x}^{2} + 1
e
x + y = 3 
\Rightarrow y = 3 - x

só que então, preciso descobrir qual curva está 'abaixo' e qual está 'em cima'.
para isso, peguei um valor entre x pertencente a ]-2,1[. por exemplo, x = 0

assim,
y = {0}^{2} + 1
\Rightarrow y = 1
e
y = 3 - 0 
\Rightarrow y = 3

logo, varia em y, entre (nessa ordem)
y = {x}^{2} + 1
e
y = 3 - x

e aí, ficaria mais ou menos assim o cálculo dessa área:


\int_{-2}^{1} \int_{{x}^{2} + 1}^{3 - x} dy dx

é isso mesmo, galera?
e se estiver correto, o que acharam da minha 'metodologia'? há um modo mais direto? o que vocês mudariam?

obrigado pela ajuda e aguardo sua resposta!!
Matemagica
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Dez 14, 2013 04:56
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [INTEGRAL DUPLA] Área do conjunto de integração

Mensagempor Matemagica » Sáb Dez 14, 2013 20:25

alguém pode me ajudar? só quero saber se o que fiz está correto :/
Matemagica
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Dez 14, 2013 04:56
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [INTEGRAL DUPLA] Área do conjunto de integração

Mensagempor Russman » Sáb Dez 14, 2013 23:51

Sim. Na verdade a utilização da integral dupla nem era necessária. Bastava que você subtraí-se a área delimitada por y=3-x pela de y=x^2 + 1. Mas, já que vem a integral no exercício, você pode aplicá-la( como você fez) e perceber que os cálculos são s mesmo.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1074
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.