• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[INTEGRAL DUPLA] Área do conjunto de integração

[INTEGRAL DUPLA] Área do conjunto de integração

Mensagempor Matemagica » Sáb Dez 14, 2013 05:31

É possível calcular a área da região B delimitada pelas curvas x = y² + 1 e x + y = 3? Se sim, calcule.

Sei que posso encontrar a área do conjunto de integração B através da integral dupla da função constante f(x,y) = 1, assim:
{A}_{B}=\int_{} \int_{B} 1  dx dy

mas como calcular a área compreendida entre essas curvas?
Quer dizer, como transformo a área entre elas no meu conjunto B?

Pensei em fazer a interseção delas, para ver onde se encontram.. fiz isso:

y = {x}^{2} + 1

x + y = 3

 \Rightarrow x + ({x}^{2} + 1) = 3 

\Rightarrow  {x}^{2} + x - 2 = 0

\Rightarrow x = 1 ou x = -2

assim, vai estar variando em [-2,1] em x.

e y variando entre as funções,
y = {x}^{2} + 1
e
x + y = 3 
\Rightarrow y = 3 - x

só que então, preciso descobrir qual curva está 'abaixo' e qual está 'em cima'.
para isso, peguei um valor entre x pertencente a ]-2,1[. por exemplo, x = 0

assim,
y = {0}^{2} + 1
\Rightarrow y = 1
e
y = 3 - 0 
\Rightarrow y = 3

logo, varia em y, entre (nessa ordem)
y = {x}^{2} + 1
e
y = 3 - x

e aí, ficaria mais ou menos assim o cálculo dessa área:


\int_{-2}^{1} \int_{{x}^{2} + 1}^{3 - x} dy dx

é isso mesmo, galera?
e se estiver correto, o que acharam da minha 'metodologia'? há um modo mais direto? o que vocês mudariam?

obrigado pela ajuda e aguardo sua resposta!!
Matemagica
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Dez 14, 2013 04:56
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [INTEGRAL DUPLA] Área do conjunto de integração

Mensagempor Matemagica » Sáb Dez 14, 2013 20:25

alguém pode me ajudar? só quero saber se o que fiz está correto :/
Matemagica
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Dez 14, 2013 04:56
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [INTEGRAL DUPLA] Área do conjunto de integração

Mensagempor Russman » Sáb Dez 14, 2013 23:51

Sim. Na verdade a utilização da integral dupla nem era necessária. Bastava que você subtraí-se a área delimitada por y=3-x pela de y=x^2 + 1. Mas, já que vem a integral no exercício, você pode aplicá-la( como você fez) e perceber que os cálculos são s mesmo.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1074
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.