• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[EQUAÇÃO DIFERENCIAL] Forma separavel

[EQUAÇÃO DIFERENCIAL] Forma separavel

Mensagempor fabriel » Qua Dez 11, 2013 16:40

E ai pessoal, tudo trankuilo?
Então to estudando Equações diferenciais e não entendi uma passagem aqui, estou estudando a parte de variáveis separáveis.
Vejam só.


Notemos que equações do tipo:

\frac{dy}{dx}=f\left(ax+by+c \right) (1.1)

Onde a e b são constantes, não são equações de variáveis separáveis, mas podem ser reduzidas a elas por meio da seguinte substituição:

v=ax+by+c\Rightarrow\frac{dv}{dx}=a+b\frac{dy}{dx} (1.2)

Substituindo em (1.1) temos:

\frac{dy}{dx}=\frac{1}{b}\left(\frac{dv}{dx}-a \right)=f(v)\Rightarrow\frac{dv}{dx}=bf(v)+a=g(v)


NÃO ENTENDI, o porque de concluir que \frac{dy}{dx}=f(v).

Eu agradeceria se alguém pudesse me ajudar.

Obrigado
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
Avatar do usuário
fabriel
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 88
Registrado em: Ter Mai 22, 2012 16:04
Localização: Chapadão do Sul-MS
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: [EQUAÇÃO DIFERENCIAL] Forma separavel

Mensagempor e8group » Qua Dez 11, 2013 17:24

fabriel escreveu:E ai pessoal, tudo trankuilo?
Então to estudando Equações diferenciais e não entendi uma passagem aqui, estou estudando a parte de variáveis separáveis.
Vejam só.


Notemos que equações do tipo:

\frac{dy}{dx}=f\left(ax+by+c \right) (1.1)

Onde a e b são constantes, não são equações de variáveis separáveis, mas podem ser reduzidas a elas por meio da seguinte substituição:

v=ax+by+c\Rightarrow\frac{dv}{dx}=a+b\frac{dy}{dx} (1.2)

Substituindo em (1.1) temos:

\frac{dy}{dx}=\frac{1}{b}\left(\frac{dv}{dx}-a \right)=f(v)\Rightarrow\frac{dv}{dx}=bf(v)+a=g(v)


NÃO ENTENDI, o porque de concluir que \frac{dy}{dx}=f(v).

Eu agradeceria se alguém pudesse me ajudar.

Obrigado


A resposta para sua dúvida seria bem simples , pelo fato da substituição de variável feita . Não se é isso que você está com dúvida .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [EQUAÇÃO DIFERENCIAL] Forma separavel

Mensagempor fabriel » Qua Dez 11, 2013 18:48

Sim, mas como que disso:

\frac{1}{b}\left(\frac{dv}{dx}-a \right) posso afirmar que é igual a isso f(v).

ou seja,

\frac{1}{b}\left(\frac{dv}{dx}-a \right) = f(v)
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
Avatar do usuário
fabriel
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 88
Registrado em: Ter Mai 22, 2012 16:04
Localização: Chapadão do Sul-MS
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: [EQUAÇÃO DIFERENCIAL] Forma separavel

Mensagempor e8group » Qua Dez 11, 2013 18:59

Sim . Segundo a mudança de variável v =  ax+by+ c ,teremos que

y'  =  f(v) . Mas , derivando-se v =  ax+by+ c com respeito a x ,vamos obter

v' = a +by'  \implies v' - a = by' \implies  \frac{v'-a}{b} = y' e assim

\frac{v'-a}{b} = f(v) .

Bom não fiz nada de mais além da solução a qual você postou . Comente qualquer dúvida .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [EQUAÇÃO DIFERENCIAL] Forma separavel

Mensagempor fabriel » Qua Dez 11, 2013 19:14

Tranquilo, estou me preucupando muito com Analise Matemática e estruturas algebricas... Tenso.. entendi, obrigado
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
Avatar do usuário
fabriel
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 88
Registrado em: Ter Mai 22, 2012 16:04
Localização: Chapadão do Sul-MS
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59