• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral por frações parciais

Integral por frações parciais

Mensagempor Danilo » Seg Nov 11, 2013 17:50

Resolver \int_{2}^{3} \frac{1}{x²-1}

Bom, desenvolvendo eu chego a x+1 = A(x+2) + B (x+1). Encontrando A e B e resolvendo a integral definida eu não encontro a resposta... grato a quem puder dar uma luz !
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 220
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Integral por frações parciais

Mensagempor santhiago » Seg Nov 11, 2013 18:46

Outra forma equivalente ,porém mais rápida de chagar ao resultado .

1 = 1 + 0 =  1 + (x-x) = (1 + x) -x .

Então \frac{1}{x^2-1} = \frac{(1 + x) -x} {x^2-1} = \frac{1+x}{x^2-1} - \frac{x}{x^2-1} ou ainda \frac{1}{x^2-1} = \frac{1}{x-1} - \frac{x}{x^2-1} tal igualdade obtida pelo fato |x| \neq 1 . A integral de 1/(x-1) sai de imediato (se necessário tome x-1 = u ) ,já em relação ao outro termo ,uma substituição simples s = x^2 - 1 resolve o problema .

Refaça as contas e verifique a resposta com o gabarito .
santhiago
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1361
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.