• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral por frações parciais

Integral por frações parciais

Mensagempor Danilo » Seg Nov 11, 2013 17:50

Resolver \int_{2}^{3} \frac{1}{x²-1}

Bom, desenvolvendo eu chego a x+1 = A(x+2) + B (x+1). Encontrando A e B e resolvendo a integral definida eu não encontro a resposta... grato a quem puder dar uma luz !
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 221
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Integral por frações parciais

Mensagempor santhiago » Seg Nov 11, 2013 18:46

Outra forma equivalente ,porém mais rápida de chagar ao resultado .

1 = 1 + 0 =  1 + (x-x) = (1 + x) -x .

Então \frac{1}{x^2-1} = \frac{(1 + x) -x} {x^2-1} = \frac{1+x}{x^2-1} - \frac{x}{x^2-1} ou ainda \frac{1}{x^2-1} = \frac{1}{x-1} - \frac{x}{x^2-1} tal igualdade obtida pelo fato |x| \neq 1 . A integral de 1/(x-1) sai de imediato (se necessário tome x-1 = u ) ,já em relação ao outro termo ,uma substituição simples s = x^2 - 1 resolve o problema .

Refaça as contas e verifique a resposta com o gabarito .
santhiago
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1374
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.