• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral por frações parciais

Integral por frações parciais

Mensagempor Danilo » Seg Nov 11, 2013 17:50

Resolver \int_{2}^{3} \frac{1}{x²-1}

Bom, desenvolvendo eu chego a x+1 = A(x+2) + B (x+1). Encontrando A e B e resolvendo a integral definida eu não encontro a resposta... grato a quem puder dar uma luz !
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Integral por frações parciais

Mensagempor e8group » Seg Nov 11, 2013 18:46

Outra forma equivalente ,porém mais rápida de chagar ao resultado .

1 = 1 + 0 =  1 + (x-x) = (1 + x) -x .

Então \frac{1}{x^2-1} = \frac{(1 + x) -x} {x^2-1} = \frac{1+x}{x^2-1} - \frac{x}{x^2-1} ou ainda \frac{1}{x^2-1} = \frac{1}{x-1} - \frac{x}{x^2-1} tal igualdade obtida pelo fato |x| \neq 1 . A integral de 1/(x-1) sai de imediato (se necessário tome x-1 = u ) ,já em relação ao outro termo ,uma substituição simples s = x^2 - 1 resolve o problema .

Refaça as contas e verifique a resposta com o gabarito .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}