• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral

Integral

Mensagempor joedsonazevedo » Sex Out 25, 2013 23:48

__________________________________________
Editado pela última vez por joedsonazevedo em Sáb Out 26, 2013 22:22, em um total de 2 vezes.
joedsonazevedo
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qui Nov 08, 2012 14:23
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. em Informática
Andamento: formado

Re: Integral (Gráfico) - Cálculo de Área

Mensagempor e8group » Sáb Out 26, 2013 12:37

Dica :

Primeiramente faça um esboço das três curvas (esta tarefa costuma ser difícil ,neste caso não ! ),em seguida verifiquemos se há pontos em comum entre os pares de curvas possível. Assim, com estes dados conseguiremos construir o conjunto R que é a região limitada pelas curvas dadas . Está é a primeira etapa . Vamos verificar se estas curvas possuem pontos em comum ,porém antes , note que as funções f :  x \mapsto 4/x  , g : x \mapsto x/4 são dadas implicitamente por x f(x) = 4 e x = 4 g(x) (aqui trocamos y por g,f ).

O gráfico das funções g e y se intersectam apenas na origem (é fácil ver! ) . Agora suponhamos que o par ordenado (a,b) pertence ao gráfico das funções g,f .Então :

(a,b) = (a,g(a)) = (a,f(a)) ,logo

b = g(a) = f(a) . Ou seja ,

b = a/4 = 4/a . Resolvendo , encontrará a =\pm 4 .

Então , (4,1),(-4,-1) são os pontos que pertencem ao mesmo tempo ao gráfico de g,f .

De forma análoga , podemos determinar a interseção entre os gráficos das funções f e y .Fazendo isto , obterá estes pontos que são :

(1,4),(-1,-4) .

Agora tente prosseguir , se não conseguir post .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Integral

Mensagempor joedsonazevedo » Sáb Out 26, 2013 18:20

_______________________________________
Editado pela última vez por joedsonazevedo em Sáb Out 26, 2013 22:38, em um total de 2 vezes.
joedsonazevedo
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qui Nov 08, 2012 14:23
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. em Informática
Andamento: formado

Re: Integral (Gráfico) - Cálculo de Área

Mensagempor e8group » Sáb Out 26, 2013 20:45

Recomendo que faça um esboço p/ acompanhar o raciocínio . Vamos trabalhar a principio apenas sobre a região limitada entre as três funções no primeiro quadrante .

Observe que a área desta região pode ser calculada através das áreas de duas regiões , a primeira limitada pelas funções y , g para x \in [0,1] e a segunda limitada pelas funções f,g para x \in [1,4] . As áreas destas regiões podem ser obtidas respc. por :

\int_{0}^{1} (y(x) - g(x))dx = \int_{0}^{1} (4x - x/4 )dx

e

\int_{1}^{4} (f(x)- g(x)) dx = \int_{1}^{4} (4/x - x/4 )dx .

Somando estas expressões , obtemos a área procurada


\int_{0}^{1} (y(x) - g(x))dx + \int_{1}^{4} (f(x)- g(x)) dx = \int_{0}^{1} (4x - x/4 )dx + \int_{1}^{4} (4/x - x/4 )dx ou ainda se preferir :


\int_{0}^{1} y(x) dx + \int_{1}^{4} f(x)dx - \int_{0}^{4} g(x) dx = \int_{0}^{1} 4x dx + \int_{1}^{4} 4/x dx -\int_{0}^{4} x/4  dx .

OBS.:

Por simetria , podemos obter a área total da região multiplicando o resultado acima por 2 .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 14 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.