• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida - limite

Dúvida - limite

Mensagempor Danilo » Sáb Set 14, 2013 13:07

Calcule

\lim_{\rightarrow0}\frac{{e}^{\frac{1}{x}}+ {e}^{-\frac{1}{x}}}{{e}^{\frac{1}{x}}-{e}^{\frac{1}{x}}}

bom, eu coloquei {e}^{\frac{1}{x}} em envidência no numerador e no denominador mas ainda sim nao deu. Grato desde já!!!!
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Dúvida - limite

Mensagempor temujin » Sáb Set 14, 2013 13:51

Rapaz, este é muito bom, hein?

Não sei se está certo...pensei em fazer assim:

Primeiro reescrevemos o limite como:

\lim_{x \to 0} \frac{e^{1/x}+\frac{1}{e^{1/x}}}{e^{1/x}-e^{1/x}}=\lim_{x \to 0} \frac{\frac{e^{2/x}+1}{e^{1/x}}}{e^{1/x}-e^{1/x}}

Agora, multiplicando numerador e denominador por e^{1/x}:

\lim_{x \to 0} \frac{\frac{e^{1/x}(e^{2/x}+1)}{e^{1/x}}}{e^{1/x}(e^{1/x}-e^{1/x})} = \lim_{x\to 0} \frac{e^{2/x}+1}{e^{2/x}(1-1)} = \lim_{x \to 0} \frac{\cancel{e^{2/x}}(1+\frac{1}{e^{2/x}})}{\cancel{e^{2/x}}(1-1)}

\lim_{x \to 0} \frac{1+\frac{1}{e^{2/x}}}{0}=\frac{1}{0} = \infty

Será que é por aí??

:?:
temujin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Qui Mar 14, 2013 15:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: formado

Re: Dúvida - limite

Mensagempor Danilo » Sáb Set 14, 2013 14:03

Cara, é isso mesmo. Obrigado! :y:
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}