• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral] como calcular

[Integral] como calcular

Mensagempor ghiza » Seg Jul 15, 2013 11:23

\int \frac{dx}{x^2+6x+13}

chegei em \int \frac{dx}{(x+3)^2+2^2}

u=x+3
logo, \int \frac{du}{(u+2)^2}

t=u+2
\int \frac{dt}{t^2}

\int \frac{t^-^2 dt}

\int {t^-^2 dt}= -\frac{t^-^1}{1} +c


agora substituindo
-(x+5)^-^1+c

isso está correto?
Editado pela última vez por ghiza em Seg Jul 15, 2013 13:22, em um total de 1 vez.
ghiza
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Jul 14, 2013 21:23
Formação Escolar: GRADUAÇÃO
Área/Curso: eng. alimentos
Andamento: cursando

Re: [Integral] como calcular

Mensagempor e8group » Seg Jul 15, 2013 12:36

Só compreendi a primeira parte que você completou quadrados (parte esta correta ) .As outras partes não compreendi devido ao erro com LaTeX . A motivação de completar quadrados e utilizar substituição simples é o fato da composição de funções . Observando o integrando já podemos dizer que a resposta da integral terá o formato arctan(g(x)) + k ,k\in \mathbb{R} onde g é uma função que vamos determinar ( Nota : (arctan(g(x)) + k  )' = \frac{g'(x)}{1+g^2(x)} ) .

Usando que x^2 + 6x +13 = (x+3)^2 + 4 e deixando 4 em evidência ,segue :

x^2 + 6x +13 = 4 (\frac{(x+3)^2}{4} + 1)  =  4 \left( \left(\frac{x+3}{2}\right)^2 +1 \right) .

Agora a substituição simples u = \frac{x+3}{2} resolve o problema .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Integral] como calcular

Mensagempor ghiza » Seg Jul 15, 2013 13:24

corrigi os erros nas formulas. mas acho que é como foi fez mesmo. valeu
ghiza
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Jul 14, 2013 21:23
Formação Escolar: GRADUAÇÃO
Área/Curso: eng. alimentos
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?