• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral] como calcular

[Integral] como calcular

Mensagempor ghiza » Seg Jul 15, 2013 11:23

\int \frac{dx}{x^2+6x+13}

chegei em \int \frac{dx}{(x+3)^2+2^2}

u=x+3
logo, \int \frac{du}{(u+2)^2}

t=u+2
\int \frac{dt}{t^2}

\int \frac{t^-^2 dt}

\int {t^-^2 dt}= -\frac{t^-^1}{1} +c


agora substituindo
-(x+5)^-^1+c

isso está correto?
Editado pela última vez por ghiza em Seg Jul 15, 2013 13:22, em um total de 1 vez.
ghiza
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Jul 14, 2013 21:23
Formação Escolar: GRADUAÇÃO
Área/Curso: eng. alimentos
Andamento: cursando

Re: [Integral] como calcular

Mensagempor e8group » Seg Jul 15, 2013 12:36

Só compreendi a primeira parte que você completou quadrados (parte esta correta ) .As outras partes não compreendi devido ao erro com LaTeX . A motivação de completar quadrados e utilizar substituição simples é o fato da composição de funções . Observando o integrando já podemos dizer que a resposta da integral terá o formato arctan(g(x)) + k ,k\in \mathbb{R} onde g é uma função que vamos determinar ( Nota : (arctan(g(x)) + k  )' = \frac{g'(x)}{1+g^2(x)} ) .

Usando que x^2 + 6x +13 = (x+3)^2 + 4 e deixando 4 em evidência ,segue :

x^2 + 6x +13 = 4 (\frac{(x+3)^2}{4} + 1)  =  4 \left( \left(\frac{x+3}{2}\right)^2 +1 \right) .

Agora a substituição simples u = \frac{x+3}{2} resolve o problema .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Integral] como calcular

Mensagempor ghiza » Seg Jul 15, 2013 13:24

corrigi os erros nas formulas. mas acho que é como foi fez mesmo. valeu
ghiza
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Jul 14, 2013 21:23
Formação Escolar: GRADUAÇÃO
Área/Curso: eng. alimentos
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.