• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Regra de L'Hospital] Indeterminções

[Regra de L'Hospital] Indeterminções

Mensagempor erickm93 » Seg Jun 24, 2013 11:47

Ola, enquanto lia o texto a respeito da regra de l'hospital, me surgiu uma duvida a respeito de indeterminações exponenciais.
Minha duvida é a seguinte:
Indeterminações do tipo {1}^{\infty}, {\infty}^{0}, por que são indeterminações?
{1}^{\infty} não vale 1? Pois 1 elevado a qualquer número vale 1, certo?
{\infty}^{0} não seria 1? Pois qualquer número elevado a 0 vale 1, certo?
Ficaria muito grato se alguém pudesse me tirar esta dúvida até amanhã, pois tenho prova amanhã à noite.
obrigado
erickm93
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qua Mai 22, 2013 10:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Física
Andamento: cursando

Re: [Regra de L'Hospital] Indeterminções

Mensagempor Man Utd » Qui Jun 27, 2013 11:56

olá. a indeterminação 1 elevado ao infinito,tens a demonstração nessa videoaula do lcmaquino que é excelente.

Limite exponeciais
link: http://www.youtube.com/watch?v=RzquQvtL0YA

por volta dos 7 minutos,ele comenta sobre o limite exponencial fundamental e demosntra que 1 elevado ao infinito é indeterminação,quanto as outras indeterminação não sei como demonstrar.
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)