• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[LIMITE]

[LIMITE]

Mensagempor tatianaCAL » Sáb Jun 22, 2013 09:45

Olá, gostaria de resolver o seguinte limite sem utilizar a regra de L'Hospital!

Tentei multiplicar pelo conjugado, usar a equação fundamental da trigonometria, mas não consegui achar uma resposta :(

\lim_{x \to \pi}\,\frac{(1 + \cos x)}{\text{sen}2x}
tatianaCAL
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Jun 22, 2013 09:37
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia
Andamento: cursando

Re: [LIMITE]

Mensagempor e8group » Sáb Jun 22, 2013 10:47

Já pensou em fazer a mudança de variável x - \pi = \beta ? Com esta mudança \beta tende a zero quando x tende a \pi .Acrescentando mais uma dica ,também podemos reescrever x como x + [\pi -\pi] = [x-\pi] + \pi .Assim , cos(x) = cos(\beta + \pi) = cos(\beta)cos(\pi) - sin(\beta)sin(\pi)   =  -cos(\beta) e sin(2x) = sin(2[[x-\pi] + \pi]) = sin(2\beta + 2\pi) =  sin(2\beta) .

Agora tente concluir e comente as dúvidas .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [LIMITE]

Mensagempor tatianaCAL » Sáb Jun 22, 2013 12:59

Muito obrigada :)

Até tinha trocado a variável para o limite tender a zero, mas não tinha raciocinado x como x + (pi- pi).
O meu deu zero, pois multipliquei pelo conjugado, simplifiquei e ficou seno de 0 sobre 2cos 0 + 2 cos^2 0.

(Peço desculpas por não utilizar os códigos, mas estou no celular ai fica complicado)
tatianaCAL
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Jun 22, 2013 09:37
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia
Andamento: cursando

Re: [LIMITE]

Mensagempor e8group » Sáb Jun 22, 2013 13:19

Não há de quê . O resultado limite realmente é zero ,e sua solução está correta .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}