• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral]sqrt(1+4x²)dx

[Integral]sqrt(1+4x²)dx

Mensagempor VenomForm » Qua Jun 19, 2013 13:57

Olá pessoal,
Alguém poderia me dizer se esta integral que resolvi está certa ou errada?
\int_{0}^{1}\sqrt[2]{1+4{x}^{2}}dx
Bom, vou postar o passa a passo que fiz.
2x=tg\Theta
x=\frac{{sec}^{2}\Theta}{2}
\frac{1}{2}\int_{}^{}\sqrt[2]{1+{tg}^{2}\Theta}{sec}^{2}\Theta d\Theta
\frac{1}{2}\int_{}^{}sec\Theta {sec}^{2}\Theta d\Thetasec\Theta tg\Theta - \int_{}^{}{sec}^{3}\Theta d\Theta+\int_{}^{}sec\Theta d\Theta
2\int_{}^{}{sec}^{3}\Theta=sec\Theta tg\Theta+ln\left|sec\Theta+tg\Theta \right|
\int_{}^{}{sec}^{3}\Theta=\frac{1}{2}\left[sec\Theta tg\Theta+ln\left|sec\Theta+tg\Theta \right| \right]
tg\Theta=2x
sec\Theta=\sqrt[2]{1+4{x}^{2}}
Substituindo,
\frac{1}{4}\left[\sqrt[2]{1+4{x}^{2}}2x+ln\left|\sqrt[2]{1+4{x}^{2}}+2x \right| \right]
Depois substitui o x=1 e subtrai por x=0 chegando no resultado de 0,75U.C
Editado pela última vez por VenomForm em Qui Jun 20, 2013 11:54, em um total de 1 vez.
VenomForm
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qua Fev 27, 2013 14:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Ciências da Computação
Andamento: cursando

Re: [Integral]sqrt(1+4x²)dx

Mensagempor VenomForm » Qui Jun 20, 2013 11:54

Dando 1 UP e corrigindo o resultado final
VenomForm
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qua Fev 27, 2013 14:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Ciências da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)