por arthurvct » Qui Mai 16, 2013 17:15
Calcule os coeficientes angulares das retas tangentes às curvas f(x)=1/x e g(x)=x^2, no ponto de interseção dos gráficos destas curvas. Qual o ângulo entre estas retas?
galera, é o seguinte, eu igualei f(x) a g(x) por ser o ponto de interseção das retas. Depois, usando a definição de derivada, achei os coeficientes angulares, a reta que tangencia f(x) tem coeficiente angular = -1, e a reta que tangencia g(x) tem coeficiente angular = 2, MAS COMO ACHAR O ÂNGULO ENTRE ELAS? Tenho prova sábado, será de GRANDE AJUDA. Grato desde já, abração!
-
arthurvct
-
por arthurvct » Qui Mai 16, 2013 19:07
alguém?
-
arthurvct
-
por arthurvct » Qui Mai 16, 2013 19:10
galera, acabei de ver no outro tópico que abri que responderam, ja entendi a questão! algum moderador pode apagar esse tópico aqui? valeu!
-
arthurvct
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Derivadas - Questão envolvendo prova e angulo
por RuuKaasu » Sáb Dez 26, 2015 23:57
- 0 Respostas
- 1721 Exibições
- Última mensagem por RuuKaasu

Sáb Dez 26, 2015 23:57
Cálculo: Limites, Derivadas e Integrais
-
- Questão envolvendo Derivadas e área! Prova no sábado!!
por arthurvct » Qui Jun 13, 2013 15:21
- 1 Respostas
- 1619 Exibições
- Última mensagem por e8group

Sex Jun 14, 2013 00:49
Cálculo: Limites, Derivadas e Integrais
-
- Problema envolvendo derivadas.
por arthurvct » Sex Mai 03, 2013 20:16
- 4 Respostas
- 2864 Exibições
- Última mensagem por arthurvct

Qui Mai 16, 2013 19:23
Cálculo: Limites, Derivadas e Integrais
-
- Problema Envolvendo Limites e Derivadas Nível Hard
por landerson » Sex Abr 24, 2015 10:32
- 0 Respostas
- 1341 Exibições
- Última mensagem por landerson

Sex Abr 24, 2015 10:32
Cálculo: Limites, Derivadas e Integrais
-
- [Questão Envolvendo Calendário]
por Maria77 » Dom Jun 29, 2014 19:00
- 1 Respostas
- 1727 Exibições
- Última mensagem por e8group

Dom Jun 29, 2014 23:22
Lógica
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.