por may » Ter Mai 14, 2013 04:41
Olá
Estou tendo dificuldade na resolução de um exercicio que pede a eq. da reta tangente e normal de uma função implicita.
Sei que é derivação implicita,mas acabo me perdendo no começo:
![\sqrt[]{2x}+\sqrt[]{3y} \sqrt[]{2x}+\sqrt[]{3y}](/latexrender/pictures/db54a6a8aa5bc5e072c0acfeaa689ca2.png)
,em (2,3)
Se alguém puder me indicar o caminho,agradeço.
Obrigada!
-
may
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Seg Jun 20, 2011 19:28
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia de energias
- Andamento: cursando
por adauto martins » Qua Out 15, 2014 21:02
equaçao da reta tangente:y-3=df(2)/dx(x-2)
equaçao da reta normal:y-3=(-1/df(2)/dx)(x-2)
y=
![\sqrt[2]{2x}+\sqrt[2]{3y} \sqrt[2]{2x}+\sqrt[2]{3y}](/latexrender/pictures/f35818f7a4e8fcdf8359f237fdd5567a.png)
...dy/dx=(1/
![\sqrt[2]{2x} \sqrt[2]{2x}](/latexrender/pictures/f606ccedf5ea4a4679d9b46452d81b6e.png)
)+3.dy/dx/(2
![\sqrt[2]{3y}) \sqrt[2]{3y})](/latexrender/pictures/6f4a7436faa73a4aa0c3c3f0308bb324.png)
...no ponto(2,3) fica,
dy/dx=(1/2)+(dy/dx/2)...dy/dx=1...logo y-3=x-2(eq.reta tangente)...y-3=-1(x-2)=2-x(eq.reta normal)
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Calcular reta tangente e normal à curva
por Kingflare » Dom Dez 07, 2014 23:54
- 1 Respostas
- 2567 Exibições
- Última mensagem por Molina

Qua Dez 17, 2014 14:15
Cálculo: Limites, Derivadas e Integrais
-
- Derivadas - reta tangente
por aline_n » Qui Abr 28, 2011 10:03
- 1 Respostas
- 1619 Exibições
- Última mensagem por LuizAquino

Qui Abr 28, 2011 10:16
Cálculo: Limites, Derivadas e Integrais
-
- [Equação da reta Tangente] derivadas
por lucasdemirand » Qua Ago 07, 2013 00:28
- 1 Respostas
- 2005 Exibições
- Última mensagem por young_jedi

Qua Ago 07, 2013 20:12
Cálculo: Limites, Derivadas e Integrais
-
- Derivadas inclinacao da reta tangente
por Gabrielmelocampos20 » Qui Nov 12, 2015 20:46
- 1 Respostas
- 2365 Exibições
- Última mensagem por Cleyson007

Sex Nov 13, 2015 08:35
Cálculo: Limites, Derivadas e Integrais
-
- [Derivadas] Encontrar a equação da reta tangente
por MrJuniorFerr » Qua Out 17, 2012 12:01
- 1 Respostas
- 2195 Exibições
- Última mensagem por MarceloFantini

Qua Out 17, 2012 12:21
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.