• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites e continuidade

Limites e continuidade

Mensagempor Marcos_Mecatronica » Sáb Abr 27, 2013 19:38

Suponha que f: [0,1] -> R seja contínua, f(0)=1 e que f(x) é racional para todo x em [0,1]. Prove que f(x)=1, para todo x em [0,1].
Marcos_Mecatronica
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Ter Mar 19, 2013 20:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecatrônica
Andamento: cursando

Re: Limites e continuidade

Mensagempor e8group » Sáb Abr 27, 2013 20:50

Pensei da seguinte forma .

Se f é racional \forall x \in [0,1] então existem funções polinomiais g,h tais que f(x) = \frac{g(x)}{h(x)} ,  h(x) \neq 0 .

Se x = 0 ,h(x) = g(x) não há nada que demonstrar . Suponhamos por absurdo que g(x)\neq h(x) \forall x\in (0,1] . Por continuidade ,

g(a) - h(a) = \lim_{x\to a} (g(x) - h(x)) \neq 0 \forall a \in (0,1] .

Tomando-se a \to 0^+ , temos que

\lim_{x\to a} (g(x) - h(x)) \neq 0  \iff  \lim_{x\to a} g(x) = g(a) \neq \lim_{x\to a} h(x)= h(a) que é uma contradição ,pois h(0) = g(0) .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limites e continuidade

Mensagempor e8group » Dom Abr 28, 2013 21:32

Recebi uma mensagem do colaborador Marcelo Fantini comentando sobre este tópico com sugestões .

Percebi que cometi um equívoco. O que temos é f(x) \in \mathbb{Q} para todo x \in [0,1] .Neste contexto ,de fato para que f seja contínua e racional em [0,1] , f obrigatoriamente tem que ser constante ,pois [0,1] é um conjunto conexo e a imagem de conexo é conexo ,como em \mathbb{Q} os conjuntos conexos são os singulares segue que a função tem que ser constante .Caso contrário , se f não fosse constante estaríamos contrariando o teorema do valor intermediário que diz

" Se f \in C([a,b]) e f(a) < k < f(b) [ou f(b) < k < f(a) ] ,então existe c \in(a,b) tal que f(c) = k . "

Conclusão :

Assim como \mathbb{Q} é denso em \mathbb{R} , \mathbb{I} também o é .

Assim , pelo TVI , tomando-se k irracional ,existe um c em (0,1) tal que f(c) = k que é uma contradição uma vez que f(x) \in \mathbb{Q} .


Qualquer erro encontrado solução estou à disposição para tentar corrigi-lo(s) .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: