• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Mudança de variavel na integral

Mudança de variavel na integral

Mensagempor matmatco » Ter Abr 23, 2013 22:29

olá, não estou entendendo o que tenho que fazer nesse exercício .

Suponha f contínua em [a,b].Seja g:[c,d]\rightarrow IR com g' contínua em [c,d], g(c)=a e g(d)=b. Suponha ainda que g'(u)>0 em ]c,d[ .Seja c = u0<u1<u2<....<un=d uma partição de [c,d] e seja a= x0<x1<x2<...<xn = b partição de [a,b] onde xi = g(ui) para i variando de 0 a n.

a) mostre que para todo i, i = 1,2,....n existe ui em [ui-1,ui] tal que \Delta xi = g'(ui)\Delta ui

b) conclua de (a) que \sum_{i=1}^{n} f(g(ui))g'(ui)\Delta ui = \sum_{i=1}^{n} f(ci)\Delta xi onde ci = g(ui).

c) Mostre que existe M>0 tal que \Delta xi \leq M \Delta ui para i variando de 0 a n.

d) conclua que
\lim_{max \Delta ui\to 0}\sum_{i=1}^{n}f(g(ui))g' (ui)\Delta ui = \lim_{max \Delta xi\to 0} \sum_{i=1}^{n}}f(ci)\Delta xi
ou seja 
 \int_{c}^{d}f(g(u))g' (u)du = \int_{a}^{b}f(x)dx
matmatco
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Ago 24, 2011 17:32
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica UFV
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59