• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite ao infinito] Dúvida na resposta = 0

[Limite ao infinito] Dúvida na resposta = 0

Mensagempor guilherme_vb » Ter Abr 23, 2013 11:27

Boa tarde.

Nesse limite \lim_{y->\infty} \frac{3}{y+4} = 0, o resultado é 0 porque o maior termo do y no denominador é maior que o maior termo do y no numerador?

Obrigado.
guilherme_vb
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Abr 23, 2013 11:01
Formação Escolar: GRADUAÇÃO
Área/Curso: Engª Computação
Andamento: cursando

Re: [Limite ao infinito] Dúvida na resposta = 0

Mensagempor e8group » Sex Abr 26, 2013 22:10

Considere f(y) = \frac{3}{y+4}  ,  D_f = \mathbb{R}\setminus\{-4\} .

Note que à medida que y percorre o intervalo (-1,+\infty) , f(y) se aproxima de zero pela direita .Já quando y\in (-\infty ,-7) sempre -1 <f(y) <0 ,neste mesmo conjunto , para y<0 grande em módulo , f(y) se aproxima de zero pela esquerda .

Assim ,

\begin{cases} \lim_{y\to -\infty}  f(y) = 0 \\ \lim_{y\to +\infty}  f(y) = 0   \end{cases} .

Daí ,

\lim_{y\to\infty}  f(y) = 0
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.