• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Exercício {limite}

Exercício {limite}

Mensagempor Danilo » Qua Abr 10, 2013 23:16

Calcule o limite \lim_{x\rightarrow+-\infty}\frac{\sqrt[]{x + \sqrt[]{x+ \sqrt[]{x}}}}{\sqrt[]{x+1}}

A minha idéia inicial é multiplicar numerador e denominador por \frac{1}{x}. Mas não sei o que fazer com o fato de ter uma raiz dentro da outra...
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Exercício {limite}

Mensagempor young_jedi » Qui Abr 11, 2013 15:10

eu pensei da seguinte forma

\lim_{x\to\infty}\frac{\sqrt{x+\sqrt{x+\sqrt x}}}{\sqrt{x+1}}=\lim_{x\to\infty}\frac{\sqrt{x+\sqrt{x+\frac{x}{\sqrt x}}}}{\sqrt{x+1}}

=\lim_{x\to\infty}\frac{\sqrt{x+\sqrt{x\left(1+\frac{1}{\sqrt x}\right)}}}{\sqrt{x+1}}

=\lim_{x\to\infty}\frac{\sqrt{x+\sqrt x\sqrt{1+\frac{1}{\sqrt x}}}}{\sqrt{x+1}}

=\lim_{x\to\infty}\frac{\sqrt{x+\frac{x}{\sqrt x}\sqrt{1+\frac{1}{\sqrt x}}}}{\sqrt{x+1}}

=\lim_{x\to\infty}\frac{\sqrt{x\left(1+\frac{1}{\sqrt x}\sqrt{1+\frac{1}{\sqrt x}}\right)}}{\sqrt{x+1}}

=\lim_{x\to\infty}\frac{\sqrt x\sqrt{1+\frac{1}{\sqrt x}\sqrt{1+\frac{1}{\sqrt x}}}}{\sqrt{x+\frac{x}{x}}}

=\lim_{x\to\infty}\frac{\sqrt x\sqrt{1+\frac{1}{\sqrt x}\sqrt{1+\frac{1}{\sqrt x}}}}{\sqrt{x\left(1+\frac{1}{x}\right)}}

=\lim_{x\to\infty}\frac{\sqrt x\sqrt{1+\frac{1}{\sqrt x}\sqrt{1+\frac{1}{\sqrt x}}}}{\sqrt x\sqrt{1+\frac{1}{x}}}

=\lim_{x\to\infty}\frac{\sqrt{1+\frac{1}{\sqrt x}\sqrt{1+\frac{1}{\sqrt x}}}}{\sqrt{1+\frac{1}{x}}}=1

no entanto isto so vale para x tendento para + infinito porque para - infinito não existe raiz de numeros negativos
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Exercício {limite}

Mensagempor Danilo » Ter Abr 23, 2013 11:44

young_jedi escreveu:eu pensei da seguinte forma

\lim_{x\to\infty}\frac{\sqrt{x+\sqrt{x+\sqrt x}}}{\sqrt{x+1}}=\lim_{x\to\infty}\frac{\sqrt{x+\sqrt{x+\frac{x}{\sqrt x}}}}{\sqrt{x+1}}

=\lim_{x\to\infty}\frac{\sqrt{x+\sqrt{x\left(1+\frac{1}{\sqrt x}\right)}}}{\sqrt{x+1}}

=\lim_{x\to\infty}\frac{\sqrt{x+\sqrt x\sqrt{1+\frac{1}{\sqrt x}}}}{\sqrt{x+1}}

=\lim_{x\to\infty}\frac{\sqrt{x+\frac{x}{\sqrt x}\sqrt{1+\frac{1}{\sqrt x}}}}{\sqrt{x+1}}

=\lim_{x\to\infty}\frac{\sqrt{x\left(1+\frac{1}{\sqrt x}\sqrt{1+\frac{1}{\sqrt x}}\right)}}{\sqrt{x+1}}

=\lim_{x\to\infty}\frac{\sqrt x\sqrt{1+\frac{1}{\sqrt x}\sqrt{1+\frac{1}{\sqrt x}}}}{\sqrt{x+\frac{x}{x}}}

=\lim_{x\to\infty}\frac{\sqrt x\sqrt{1+\frac{1}{\sqrt x}\sqrt{1+\frac{1}{\sqrt x}}}}{\sqrt{x\left(1+\frac{1}{x}\right)}}

=\lim_{x\to\infty}\frac{\sqrt x\sqrt{1+\frac{1}{\sqrt x}\sqrt{1+\frac{1}{\sqrt x}}}}{\sqrt x\sqrt{1+\frac{1}{x}}}

=\lim_{x\to\infty}\frac{\sqrt{1+\frac{1}{\sqrt x}\sqrt{1+\frac{1}{\sqrt x}}}}{\sqrt{1+\frac{1}{x}}}=1

no entanto isto so vale para x tendento para + infinito porque para - infinito não existe raiz de numeros negativos




Valeu!!!! Entendi!!
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?