por marcosmuscul » Qua Abr 03, 2013 19:09
consigo derivar.
consigo isolar x.
mas creio que não seja isso que pede-se.
preciso de ajuda.
- Anexos
-

-
marcosmuscul
- Usuário Dedicado

-
- Mensagens: 39
- Registrado em: Ter Mar 19, 2013 15:48
- Localização: RJ
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: a começar engenharia civil
- Andamento: cursando
por e8group » Qua Abr 03, 2013 19:46
Considere uma equação nas variáveis

.Uma função

é dada implicitamente por tal equação se ,

, o ponto

satisfazer a equação .
A equação do segundo grau 2 em y (dada) tem solução em y :

.
Assim , a função

é dada implicitamente pela equação

.
E ,é claro que a função

também é dada implicitamente pela equação
Observe que ambas funções estão bem definidas

e

.
Tente concluir .
OBS.: Anexe imagens se for estritamente necessário ,neste caso não o é .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por marcosmuscul » Qua Abr 03, 2013 19:57
nesse caso voce utilizou a fórmula usada pra encontrar as raízes de uma equação de 2°grau. até aí entendi.
mas...e se fosse uma expressão em que aparecesse y³ ao invés de y²?
teríamos que saber de cabeça a fórmula de encontrar raízes de equações de 3°grau?
-
marcosmuscul
- Usuário Dedicado

-
- Mensagens: 39
- Registrado em: Ter Mar 19, 2013 15:48
- Localização: RJ
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: a começar engenharia civil
- Andamento: cursando
por e8group » Qua Abr 03, 2013 20:26
Não necessariamente ,há equações do terceiro grau que facilmente conseguimos calcular uma de suas raízes,desta forma poderemos fatorar este polinômio .Se esta equação possui mais duas soluções é fácil obter elas através da fórmula resolvente da equação do segundo grau .
Exemplo :
A equação

possui uma única raiz que é

,pois

e

.
Já o próximo exemplo não é tão simples que é

neste caso é útil recorrer a fórmula resolvente para equações de grau 3 .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Ajuda não entendi o enunciado] Limites
por elisafrombrazil » Sáb Jan 21, 2017 10:39
- 2 Respostas
- 5162 Exibições
- Última mensagem por e8group

Qua Fev 01, 2017 16:57
Cálculo: Limites, Derivadas e Integrais
-
- [Função]Não entendi
por Giudav » Sex Abr 13, 2012 00:30
- 1 Respostas
- 1316 Exibições
- Última mensagem por LuizAquino

Sáb Abr 14, 2012 12:20
Funções
-
- [continuidade de função]não entendi esse exemplo.
por marcosmuscul » Ter Mar 26, 2013 19:52
- 0 Respostas
- 1199 Exibições
- Última mensagem por marcosmuscul

Ter Mar 26, 2013 19:52
Cálculo: Limites, Derivadas e Integrais
-
- [Função exponencial] Não entendi como chegou a formula
por Leti Moura » Ter Jun 12, 2012 21:16
- 2 Respostas
- 3937 Exibições
- Última mensagem por Russman

Qua Jun 13, 2012 00:57
Funções
-
- [Derivada] Função Implicita
por fabriel » Sex Mar 15, 2013 13:27
- 1 Respostas
- 1439 Exibições
- Última mensagem por e8group

Sex Mar 15, 2013 21:50
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.