• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Função implícita]não entendi o enunciado do problema.

[Função implícita]não entendi o enunciado do problema.

Mensagempor marcosmuscul » Qua Abr 03, 2013 19:09

consigo derivar.
consigo isolar x.
mas creio que não seja isso que pede-se.
preciso de ajuda.
Anexos
função.JPG
marcosmuscul
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Mar 19, 2013 15:48
Localização: RJ
Formação Escolar: ENSINO MÉDIO
Área/Curso: a começar engenharia civil
Andamento: cursando

Re: [Função implícita]não entendi o enunciado do problema.

Mensagempor e8group » Qua Abr 03, 2013 19:46

Considere uma equação nas variáveis x,y .Uma função y = f(x) é dada implicitamente por tal equação se ,\forall x\in D_f , o ponto (x,f(x)) satisfazer a equação .

A equação do segundo grau 2 em y (dada) tem solução em y :

y = \frac{-1 \pm \sqrt{1 - 4 \cdot x \cdot (x-1)}}{2x} .

Assim , a função y = \frac{-1 + \sqrt{1 -4x^2 + 4x}}{2x} é dada implicitamente pela equação xy^2  + x +y = 1 .

E ,é claro que a função y = \frac{-1 - \sqrt{1 -4x^2 + 4x}}{2x} também é dada implicitamente pela equação xy^2  + x +y = 1

Observe que ambas funções estão bem definidas \iff x\neq 0 e 1 -4x^2 + 4x \geq 0 .

Tente concluir .

OBS.: Anexe imagens se for estritamente necessário ,neste caso não o é .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Função implícita]não entendi o enunciado do problema.

Mensagempor marcosmuscul » Qua Abr 03, 2013 19:57

nesse caso voce utilizou a fórmula usada pra encontrar as raízes de uma equação de 2°grau. até aí entendi.
mas...e se fosse uma expressão em que aparecesse y³ ao invés de y²?
teríamos que saber de cabeça a fórmula de encontrar raízes de equações de 3°grau?
marcosmuscul
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Mar 19, 2013 15:48
Localização: RJ
Formação Escolar: ENSINO MÉDIO
Área/Curso: a começar engenharia civil
Andamento: cursando

Re: [Função implícita]não entendi o enunciado do problema.

Mensagempor e8group » Qua Abr 03, 2013 20:26

Não necessariamente ,há equações do terceiro grau que facilmente conseguimos calcular uma de suas raízes,desta forma poderemos fatorar este polinômio .Se esta equação possui mais duas soluções é fácil obter elas através da fórmula resolvente da equação do segundo grau .


Exemplo :

A equação -12+12 x-5 x^2+x^3 possui uma única raiz que é x = 2 ,pois

-12+12 x-5 x^2+x^3 =  (x-2)(x^2 -3x + 6) e x^2 -3x + 6 > 0 ,\forall x \in \mathbb{R} .

Já o próximo exemplo não é tão simples que é -20+39x- 58 x^2+x^3 = 0 neste caso é útil recorrer a fórmula resolvente para equações de grau 3 .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}