por citadp » Qua Abr 03, 2013 12:24
Para provar que f(x) = 3 / (x + 7) pela definição dos limites laterias que não tem limite no ponto x = -7 é só substituir o x pelo -7 ?
Eu não estou a ver outra maneira de resolver este exercicio.
-
citadp
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Sáb Jun 02, 2012 13:11
- Formação Escolar: SUPLETIVO
- Área/Curso: Informática
- Andamento: cursando
por Douglas16 » Qua Abr 03, 2013 16:11
O limite para o ponto de coordenada x=-7 é encontrado fazendo a substituição de x por -7.
Mas isso é permitido pelo motivo que em geral toda função fracionária só possui um valor limite (valor finito), quando o limite da função do numerador desta função fracionária, seja igual a 0, e o limite da função do denominador desta função fracionária também seja igual a zero. Caso o limite da função do numerador e/ou denominador desta função fracionária seja diferente de zero, então pode haver dois tipos de resultados:
1)


=0 em que b é diferente de zero e z é qualquer valor real.
2)


=

em que b é diferente de zero e z é qualquer valor real.
Observe que a divisão por zero é indefinida, somente o limite da divisão de um valor diferente de zero por uma valor igual a zero, é que é igual ao infinito.
Resumindo: o valor do limite da sua função fracionária quando x se aproxima de -7 é o infinito, e por ser o infinito um valor não real, tal limite é indefinido ou inexistente no campo do corpo dos números reais.
-
Douglas16
- Usuário Parceiro

-
- Mensagens: 69
- Registrado em: Seg Fev 11, 2013 19:15
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Matemática
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limite] Provar continuidade
por Man Utd » Qua Abr 03, 2013 09:41
- 2 Respostas
- 1177 Exibições
- Última mensagem por Man Utd

Qua Abr 03, 2013 19:43
Cálculo: Limites, Derivadas e Integrais
-
- [limites] provar que existe o limite
por heric » Qui Out 13, 2011 14:36
- 4 Respostas
- 3272 Exibições
- Última mensagem por LuizAquino

Seg Out 17, 2011 11:35
Cálculo: Limites, Derivadas e Integrais
-
- Limite Notável-Como provar?
por joaofonseca » Dom Out 30, 2011 20:19
- 4 Respostas
- 3828 Exibições
- Última mensagem por joaofonseca

Ter Nov 01, 2011 08:14
Cálculo: Limites, Derivadas e Integrais
-
- Propriedades de Limite. Provar afirmações
por Blame » Qua Abr 24, 2013 19:52
- 1 Respostas
- 1505 Exibições
- Última mensagem por e8group

Sex Abr 26, 2013 21:32
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITES 2 variáveis] Provar que não existe o limite
por Sohrab » Qui Abr 25, 2013 00:01
- 0 Respostas
- 4646 Exibições
- Última mensagem por Sohrab

Qui Abr 25, 2013 00:01
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.