• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite no infinito]por que a expressão inicial influencia?

[Limite no infinito]por que a expressão inicial influencia?

Mensagempor marcosmuscul » Qua Mar 27, 2013 09:41

Calculando este limite:
achei como resposta 1.
mas o gabarito é -1.
compreendo o gabarito ao olhar para a expressão inicial.
mas porque a inicial é mais importante do que a final?
desculpe a minha ignorância. :-D
Anexos
porque -1 e nao 1.JPG
marcosmuscul
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Mar 19, 2013 15:48
Localização: RJ
Formação Escolar: ENSINO MÉDIO
Área/Curso: a começar engenharia civil
Andamento: cursando

Re: [Limite no infinito]por que a expressão inicial influenc

Mensagempor e8group » Qua Mar 27, 2013 22:22

A solução está incorreta ,pois a expressão final obtida é equivalente a primeira se , e somente se , x > 0 .Para x < 0 você está alterando o resultado.Reflita sobre isto .

Mas veja \sqrt{x^2 - 2x +2} = \sqrt{x^2[1 - 2/x +2/x^2]} = |x| \sqrt{1 - 2/x +2/x^2}   , x\neq 0 que para x < 0 fica -  x \sqrt{1 - 2/x +2/x^2} e x + 1 = x(1+1/x) , x\neq 0 .

Ficou claro ?
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Limite no infinito]por que a expressão inicial influenc

Mensagempor marcosmuscul » Qui Mar 28, 2013 11:21

entendi amigo.
\sqrt[2]{{a}^{2}} = \left|a \right| sempre, sempre, sempre. valeu pelo esclarecimento.
marcosmuscul
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Mar 19, 2013 15:48
Localização: RJ
Formação Escolar: ENSINO MÉDIO
Área/Curso: a começar engenharia civil
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)