por marcosmuscul » Qua Mar 27, 2013 09:41
Calculando este limite:
achei como resposta 1.
mas o gabarito é -1.
compreendo o gabarito ao olhar para a expressão inicial.
mas porque a inicial é mais importante do que a final?
desculpe a minha ignorância.

- Anexos
-

-
marcosmuscul
- Usuário Dedicado

-
- Mensagens: 39
- Registrado em: Ter Mar 19, 2013 15:48
- Localização: RJ
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: a começar engenharia civil
- Andamento: cursando
por e8group » Qua Mar 27, 2013 22:22
A solução está incorreta ,pois a expressão final obtida é equivalente a primeira se , e somente se ,

.Para

você está alterando o resultado.Reflita sobre isto .
Mas veja
![\sqrt{x^2 - 2x +2} = \sqrt{x^2[1 - 2/x +2/x^2]} = |x| \sqrt{1 - 2/x +2/x^2} , x\neq 0 \sqrt{x^2 - 2x +2} = \sqrt{x^2[1 - 2/x +2/x^2]} = |x| \sqrt{1 - 2/x +2/x^2} , x\neq 0](/latexrender/pictures/f64cc6ae070a634bcdb25c226bd0f691.png)
que para

fica

e

.
Ficou claro ?
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por marcosmuscul » Qui Mar 28, 2013 11:21
entendi amigo.
![\sqrt[2]{{a}^{2}} = \left|a \right| \sqrt[2]{{a}^{2}} = \left|a \right|](/latexrender/pictures/fc7c2daea076204520754f68e5839f72.png)
sempre, sempre, sempre. valeu pelo esclarecimento.
-
marcosmuscul
- Usuário Dedicado

-
- Mensagens: 39
- Registrado em: Ter Mar 19, 2013 15:48
- Localização: RJ
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: a começar engenharia civil
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [limites no infinito]Limite no infinito de um ponto finito
por moyses » Ter Ago 30, 2011 12:45
- 3 Respostas
- 3355 Exibições
- Última mensagem por LuizAquino

Ter Ago 30, 2011 18:57
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] limite trigonométrico quando x tende ao infinito
por Ge_dutra » Seg Jan 28, 2013 10:13
- 2 Respostas
- 7027 Exibições
- Última mensagem por Ge_dutra

Ter Jan 29, 2013 14:20
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Questão de limite tendendo à infinito
por _bruno94 » Sex Mai 31, 2013 00:28
- 3 Respostas
- 2768 Exibições
- Última mensagem por Jhonata

Sex Mai 31, 2013 01:30
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITE] Limite que tende ao infinito
por Mell » Qua Mai 08, 2013 00:09
- 3 Respostas
- 2458 Exibições
- Última mensagem por e8group

Qua Mai 08, 2013 21:21
Cálculo: Limites, Derivadas e Integrais
-
- Limite infinito
por VFernandes » Sex Mar 04, 2011 17:13
- 4 Respostas
- 3789 Exibições
- Última mensagem por LuizAquino

Sex Mar 04, 2011 21:48
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
[calculo] derivada
Autor:
beel - Seg Out 24, 2011 16:59
Para derivar a função
(16-2x)(21-x).x
como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?
Assunto:
[calculo] derivada
Autor:
MarceloFantini - Seg Out 24, 2011 17:15
Você poderia fazer a distributiva e derivar como um polinômio comum.
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:26
Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:31
derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.