• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral Indefinida] Aplicada à projeções de população

[Integral Indefinida] Aplicada à projeções de população

Mensagempor Matheus Lacombe O » Qui Mar 14, 2013 12:57

- Olá pessoal! Tudo bem?

- Minha professora de cálculo passou já faz algum tempo uma lista de exercícios com cinqüenta questões de integral indefinida do livro do Anton. Com uma certa dificuldade consegui resolver todas - mesmo que não tenha certeza das respostas dos exercícios pares, acredito que estejam certas. Porém, ela passou uma outra questão "solta" - exercício nº70 - em que o autor coloca um problema aplicado. E esta em particular, não consegui.

"Suponha que uma população 'p' de rãs em um lago está estimada no começo de 2005 em 100.000 e que o modelo de crescimento (em milhares) após t anos será de:"

p'(t)={(3+0.12t)}^{\frac{3}{2}}

" Estime a população projetada para o começo do ano de 2010."

- Eu tentei fazer uma integral definida do ano 5 até o ano 10:

\int_{5}^{10}{(3+0.12t)}^{\frac{3}{2}}dt

u=3+0.12t

\frac{du}{dt}=0.12

\frac{du}{dt}=\frac{3}{25}

du=\frac{3dt}{25}

\frac{du}{\frac{3}{25}}=dt

\frac{25du}{3}=dt

\int_{5}^{10}{u^{\frac{3}{2}}\frac{25du}{3}

\frac{25}{3}\int_{5}^{10}{u^{\frac{3}{2}}du=\frac{25}{3}.\frac{{u}^{\frac{5}{2}}}{\frac{5}{2}}

=\frac{25}{3}.\frac{2{u}^{\frac{5}{2}}}{5}

=\frac{50{u}^{\frac{5}{2}}}{15}=\frac{10{u}^{\frac{5}{2}}}{3}

\frac{25}{3}\int_{5}^{10}{u^{\frac{3}{2}}du=\left[\frac{10{u}^{\frac{5}{2}}}{3}{{\right]}_{5}}^{10}

- logo:

\frac{25}{3}\int_{5}^{10}{(3+0.12t)}^{\frac{3}{2}}dt=\left[\frac{10{(3+0.12t)}^{\frac{5}{2}}}{3}{{\right]}_{5}}^{10}

=\left(\frac{10{(3+\frac{3}{25}.10)}^{\frac{5}{2}}}{3}\right)-\left(\frac{10{(3+\frac{3}{25}.5)}^{\frac{5}{2}}}{3}\right)

=120.5-81.9

=38.5

- Se é "em milhares" então seria 38.500? Isso não faz muito sentido, pois a população começa em 100.000. Gente, onde foi que eu errei?


Grato, desde já.
Att. Matheus L. Oliveira
Matheus Lacombe O
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 36
Registrado em: Sex Jun 03, 2011 22:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Mecânica
Andamento: cursando

Re: [Integral Indefinida] Aplicada à projeções de população

Mensagempor Russman » Qui Mar 14, 2013 14:08

O tempo é medido na função em "após t anos". Assim, como do início de 2005 até o inicio de 2010 passaram-se 5 anos, você deve fazer a integral de t=0 até t=5 e não de t=5 até t=10.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: