por Matheus Lacombe O » Sáb Mar 02, 2013 23:54
- Olá pessoal! Cá estou eu, mais uma vez. Pois bem. Tenho uma lista com setenta exercícios do livro
Calculo(Howard Anton) para resolver. Resolvi sem problema os primeiros exercícios, porém, chegando ao nº6 encontrei uma dificuldade que parece ser comum a todos os itens deste exercício: depois de aplicar a substituição eu termino com uma expressão onde não consigo mais integrar, pois não é possível "trazer o denominador para cima".
nº6) Item c)
![\int_{}^{}\frac{1}{x\sqrt[]{9{x}^{2}-1}}dx \int_{}^{}\frac{1}{x\sqrt[]{9{x}^{2}-1}}dx](/latexrender/pictures/c1118fa067dab539f80f68636b31fa7f.png)




![\int_{}^{}\frac{1}{\frac{u\sqrt[]{{u}^{2}-1}}{3}}.\frac{du}{3} \int_{}^{}\frac{1}{\frac{u\sqrt[]{{u}^{2}-1}}{3}}.\frac{du}{3}](/latexrender/pictures/0dc0be322fd299ad9c298f433fc3dc80.png)
![\int_{}^{}\frac{1}{1}.\frac{3}{u\sqrt[]{{u}^{2}-1}}.\frac{du}{3} \int_{}^{}\frac{1}{1}.\frac{3}{u\sqrt[]{{u}^{2}-1}}.\frac{du}{3}](/latexrender/pictures/fce6437d1c4095b39b5eda37c3a9ccc7.png)
![\int_{}^{}\frac{1}{u\sqrt[]{{u}^{2}-1}}.du \int_{}^{}\frac{1}{u\sqrt[]{{u}^{2}-1}}.du](/latexrender/pictures/3e23f4a083f430fb38432bcca269ed0f.png)
- Paro nesta parte. Em suma, todos os itens do nº6 parecem dar neste mesmo problema. Eu não consigo tirar o
![u\sqrt[]{{u}^{2}-1} u\sqrt[]{{u}^{2}-1}](/latexrender/pictures/798b08b2792f6825aa0635f19f500ace.png)
do denominador e continuar.
Desde já grato pela atenção. Abraços.
Cordialmente, Matheus L. Oliveira.
-
Matheus Lacombe O
- Usuário Dedicado

-
- Mensagens: 36
- Registrado em: Sex Jun 03, 2011 22:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. Mecânica
- Andamento: cursando
por e8group » Dom Mar 03, 2013 16:02
Boa tarde ,parece ser mais prático o desenvolvimento da questão caso faça a substituição

;daí derivando ambos membros em relação x ,obtemos :

.
Deste modo fazendo as devidas substiuições ,temos
Consegue concluir ?
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Matheus Lacombe O » Dom Mar 03, 2013 17:19
Sim, sim. O problema é que o exercício do Anton pede pro sujeito utilizar "u=3x". Dai da problema
-
Matheus Lacombe O
- Usuário Dedicado

-
- Mensagens: 36
- Registrado em: Sex Jun 03, 2011 22:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. Mecânica
- Andamento: cursando
por e8group » Dom Mar 03, 2013 18:15
Ok.,neste caso recomendo que faça

.Tente concluir .
OBS.: Veja que

.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Integral Indefinida] Método por Partes
por Matheus Lacombe O » Sex Mar 29, 2013 18:12
- 5 Respostas
- 2958 Exibições
- Última mensagem por young_jedi

Sáb Mar 30, 2013 21:33
Cálculo: Limites, Derivadas e Integrais
-
- Integral indefinida (por substituição)
por Anne2011 » Sex Set 16, 2011 21:00
- 5 Respostas
- 3327 Exibições
- Última mensagem por Anne2011

Sex Set 16, 2011 21:47
Cálculo: Limites, Derivadas e Integrais
-
- Integral indefinida (por substituição)
por Anne2011 » Sex Set 16, 2011 23:17
- 3 Respostas
- 2647 Exibições
- Última mensagem por MarceloFantini

Sáb Set 17, 2011 17:28
Cálculo: Limites, Derivadas e Integrais
-
- [INTEGRAL INDEFINIDA] Substituição
por fabriel » Qua Out 03, 2012 13:24
- 2 Respostas
- 2346 Exibições
- Última mensagem por fabriel

Qua Out 03, 2012 15:15
Cálculo: Limites, Derivadas e Integrais
-
- [INTEGRAL INDEFINIDA] Substituição
por fabriel » Seg Nov 26, 2012 00:03
- 4 Respostas
- 3247 Exibições
- Última mensagem por fabriel

Ter Nov 27, 2012 01:23
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.