• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Resolução de um limite de uma função (a solução é -3)

Resolução de um limite de uma função (a solução é -3)

Mensagempor Douglas16 » Qua Fev 27, 2013 20:38

\lim_{x\rightarrow2}\frac{\sqrt[]{x+2}-\sqrt[]{3x-2}}{\sqrt[]{5x-1}-\sqrt[]{4x+1}}
Douglas16
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Fev 11, 2013 19:15
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando

Re: Resolução de um limite de uma função (a solução é -3)

Mensagempor Russman » Qua Fev 27, 2013 20:50

Sabe usa a L'Hopital?
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Resolução de um limite de uma função (a solução é -3)

Mensagempor Douglas16 » Qua Fev 27, 2013 21:11

sei como usá-la, mas a resolução não deve usar a regra em si, no máximo somente os mesmos princípios de raciocínio mais básicos, mas não a regra de L' Hôpital.
Douglas16
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Fev 11, 2013 19:15
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando

Re: Resolução de um limite de uma função (a solução é -3)

Mensagempor Russman » Qua Fev 27, 2013 21:44

Então tente multiplicar o limite por

\frac{\sqrt{5x-1}+\sqrt{4x+1}}{\sqrt{5x-1}+\sqrt{4x+1}}

e , em seguida, por

\frac{\sqrt{x+2}+\sqrt{3x-2}}{\sqrt{x+2}+\sqrt{3x-2}}.

Lembre-se que o intuito disto vem do Produto Notável

(a-b)(a+b) = a^2 - b^2
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Resolução de um limite de uma função (a solução é -3)

Mensagempor Douglas16 » Qua Fev 27, 2013 22:08

continua dando \frac{0}{0} que é indeterminado.
Douglas16
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Fev 11, 2013 19:15
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando

Re: Resolução de um limite de uma função (a solução é -3)

Mensagempor Russman » Qua Fev 27, 2013 23:07

Impossível.

Fazendo a 1° multiplicação você obtém

\frac{(\sqrt{x+2}-\sqrt{3x-2})(\sqrt{5x-1}+\sqrt{4x+1})}{(x-2)}

que ainda sim resulta indeterminado.

Fazendo a 2° multiplicação, então, chegamos em

\frac{(-2x+4)(\sqrt{5x-1}+\sqrt{4x+1})}{(x-2)(\sqrt{x+2}+\sqrt{3x-2})}.

Observe que -2x+4 = -2(x-2).

Tente continuar a partir daí.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Resolução de um limite de uma função (a solução é -3)

Mensagempor Douglas16 » Qua Fev 27, 2013 23:17

isso aí, correto.
Douglas16
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Fev 11, 2013 19:15
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}